

Druckluft-Trocknung

Wenn Druckluft einfach trocken sein soll

Was ist ...?

Druckluft

ist Energie in Form von komprimierter Umgebungsluft. Komprimierte Luft hat das permanente Bestreben, sich wieder auf Umgebungsdruck zu entspannen und leistet bei diesem Expansionsprozess Arbeit. Druckluft ist neben elektrischer Energie eine der wichtigsten Energieformen in industriellen Fertigungsprozessen und aufgrund vieler Vorteile weit verbreitet:

- · direkt Vor-Ort und nach Bedarf herstellbar
- einfach und verlustfrei speicherbar
- · einfach zu transportieren
- · hohe Energiedichte
- einfach und platzsparend wandelbar in andere Energieformen z.B. Blasluft, schnelle lineare Bewegungen mit hoher Kraft, Drehbewegungen mit hohem Drehmoment. etc.
- · vielseitig in der Anwendung

In der Druckluft sind Verschmutzungen und Feuchte aus der Umgebungsluft enthalten, die entsprechend dem Betriebsdruck aufkonzentriert werden. Ölgeschmierte Kompressoren fügen der Druckluft zusätzliche Ölanteile hinzu. Bei der Abkühlung der verdichteten, heißen Druckluft auf eine für die Nutzung geeignete Betriebstemperatur kondensieren größere Mengen Wasser aus (Kondensat).

Die Druckluft ist nach heutigem Stand der Technik in diesem Zustand noch nicht nutzbar und würde das Druckluftsystem, die Druckluftverbraucher und die mit der Druckluft in Berührung kommende Erzeugnisse übermäßig verschmutzen und schädigen.

FST Trocknungstechnik

für Betriebsüberdrücke bis 350 bar

Druckluftaufbereitung

entfernt die unerwünschten Verunreinigungen und stellt die, für die jeweilige Anwendung erforderliche Reinheit der Druckluft her – von Steuerluft oder technisch ölfreier Druckluft bis hin zu steriler Reinstluft oder medizinischer Atemluft.

Es ist die Aufgabe der Druckluftaufbereitung, einen dauerhaften und störungsfreien Betrieb von mit Druckluft betriebenen Anwendungen sicherzustellen, Stillstandszeiten und außerplanmäßige Wartungs- und Reparaturaufwendungen zu minimieren und erzeugungsbedingte Verunreinigungen in der Druckluft von produzierten Waren fern zu halten.

Verschmutzungen
Reparaturen
Stillstand
Mängel

0,00x%

DRUCKLUFTAUFBEREITUNG

Viel wichtiger jedoch – Druckluftaufbereitung ist aktiver Umwelt- und Arbeitsschutz. Flüssige Öltropfen, feinster Ölnebel, öl-kontaminierte Feststoffe und gasförmige, übelriechende Öldämpfe, d.h. Verunreinigungen, die erst Vor-Ort durch die Erzeugung der Druckluft entstehen, werden von der Druckluftaufbereitung hochgradig entfernt und gelangen somit nicht in schädigender Form in die Umwelt.

Druckluftaufbereitung ist ein System aus mehreren, einzeln hintereinander geschalteten Aufbereitungskomponenten – die sogenannte Aufbereitungskette – in der stufenweise die erforderliche Druckluftreinheit erzeugt wird. Die

Drucklufttrocknung

ist eine elementare Kernkomponente in der Druckluftaufbereitung. Die Aufgabe der Drucklufttrocknung ist es, die in der Druckluft enthaltene Feuchtigkeit auf einen definierten Restwert zu reduzieren.

Am Austritt des Kompressors ist im Vergleich zur Summe aller weiteren Verunreinigungen die 1.000-fache Menge an Feuchtigkeit in der Druckluft enthalten – zu 100% gesättigt – d.h. jede noch so geringe Abkühlung der Druckluft auf dem Weg zum Druckluftverbraucher bewirkt die Kondensation von Wasser und somit die Entstehung von Kondensat in der Druckluft.

Drucklufttrockner entfernen hochgradig die Feuchtigkeit und erzeugen dadurch trockene, untersättigte Druckluft, in der keine Kondensationsprozesse mehr stattfinden können – weder im Druckluftsystem noch in der Druckluftanwendung.

Die unterschiedlichen Trocknerarten und die von der FST GmbH verfügbaren Bauformen an Drucklufttrocknern werden im Folgenden dieser Broschüre näher beschrieben. Der ausklappbare Anwendungs- und Druckluftreinheitsleitfaden gibt eine zusätzliche Hilfestellung zur Ermittlung einer optimierten, individuellen Systemlösung.

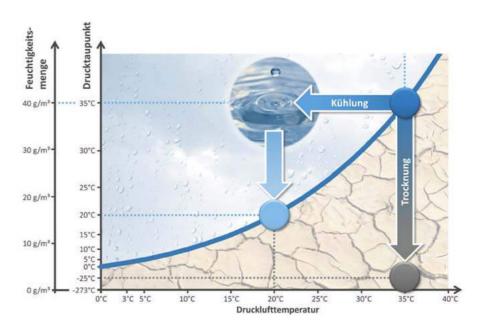
Warum Druckluft-Trocknung?

Feuchtigkeit in der Umgebungsluft ist für uns lebensnotwendig und Grundlage unseres Lebens. Feuchtigkeit in der Druckluft ist jedoch eine "Verunreinigung", speziell wenn sie in der Druckluft zu flüssigem Wasser kondensiert oder zu Vereisungen führt, und muss daher separiert werden.

Druckluft ist von einem Kompressor angesaugte, komprimierte Umgebungsluft. Folglich enthält auch die Druckluft die in der Umgebungsluft enthaltene, jahreszeitlich- und witterungsbedingte Feuchtigkeitsmenge. Mehr noch – durch die Verdichtung ist die Druckluft am Austritt des Kompressors in der Regel zu 100% mit Feuchtigkeit gesättigt (100% r.F.).

Die maximale Menge an Feuchtigkeit, die von der Druckluft aufgenommen werden kann, ist abhängig von der Temperatur und beschrieben durch die Dampfdruckkurve bzw. Feuchtigkeitstabelle. Je höher die Temperatur, desto mehr Feuchtigkeit kann von der Druckluft aufgenommen werden. Ist bei einer Abkühlung die in der Druckluft enthaltene Feuchtigkeitsmenge höher als bei der abgesenkten Temperatur maximal möglich, kondensiert die überschüssige Feuchtigkeit als flüssiges Wasser aus. Es entsteht Kondensat in der Druckluft.

Die mit Feuchtigkeit gesättigte Druckluft am Austritt eines Kompressors ist wärmer als die Umgebungsluft und kühlt sich auf dem Weg durch die "kalten" Rohrleitungen ab. Es entsteht Kondensat in der Druckluft. Bei Rohrleitungen im Außenbereich (jahreszeitlich bedingte kalte Temperaturen) und bei der Anwendung der Druckluft am Verbraucher selbst (Expansionskälte) kühlt sich die Druckluft nochmals ab, bis hin zur Vereisung.



Typische Verunreinigungen in der Druckluft

Drucklufttrockner entfernen die Feuchtigkeit und erzeugen trockene, mit Feuchtigkeit untersättigte Druckluft.

Unterschiedliche Trocknerarten erzeugen dabei unterschiedliche Trocknungsgrade. Vorteilhaft ist die Angabe des Trocknungsgrades der Druckluft als Drucktaupunkt in der Einheit °C.

Liegt die Drucklufttemperatur über dem Drucktaupunkt entsteht kein Kondensat und die Druckluft ist und bleibt trocken.

i

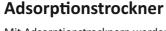
Sowohl Kühler als auch Trockner reduzieren die Feuchtigkeitsmenge in der Druckluft. Bei Kühlern ist die Druckluft am Austritt jedoch noch zu 100% mit Feuchtigkeit gesättigt. Kühler werden daher vorwiegend zur Temperaturreduzierung, Trockner hingegen zur gezielten Trocknung der Druckluft auf einen bestimmten Drucktaupunkt und somit zur gesicherten Vermeidung von Kondensatbildung eingesetzt.

Getrocknete, mit Feuchtigkeit untersättigte Druckluft ist bestrebt Feuchtigkeit wieder aufzunehmen. Mit getrockneter Druckluft können daher "nasse" Bereiche eines Druckluftsystems nachträglich "getrocknet" werden.

Weitere grundlegende und interessante Informationen über die Drucklufttrocknung und die Feuchtigkeitstabelle finden Sie auf www.fstweb.de im Bereich Wissenswertes über

Harations-Separations-Technic

Trocknerarten


Kältetrockner

Mit Kältetrocknern werden Drucktaupunkte von bis zu +3°C erzielt.

Die Anwendungsbereiche von Druckluft, getrocknet mit Kältetrocknern, sind im Allgemeinen frostfreie Innenrauminstallationen und Druckluftanwendungen mit geringen Anforderungen an den Trocknungsgrad, z.B. Steuerluft, Blasluft, Druckluftwerkzeuge, etc. Kältetrockner werden in der Regel eingesetzt, um die Druckluft zentral auf einen "Grundtrocknungsgrad" aufzubereiten, der für die meisten installierten Druckluftanwendungen geeignet ist. Höhere Trocknungsgrade für einzelne Anwendungen werden dezentral und somit nur in der erforderlichen Menge erzeugt.

Kältetrockner erzwingen durch aktive Abkühlung der Druckluft die vorzeitige Kondensation der in der Druckluft enthaltenen Feuchtigkeit. Das dabei entstehende Kondensat wird im Kältetrockner gesammelt und abgeleitet. Durch die anschließende Erwärmung wird die Druckluft in einen mit Feuchtigkeit untersättigten Zustand gebracht und somit getrocknet.

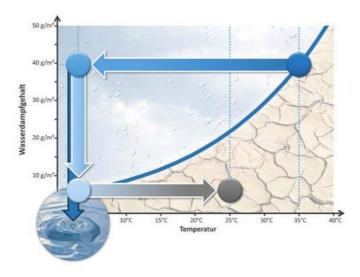
Kältetrockner sind für den Dauerbetrieb geeignet und für alle Volumenstrombereiche erhältlich. Der Druckbereich geht in der Regel bis 16 bar, es sind jedoch auch Sonderausführungen für höhere Betriebsüberdrücke erhältlich.

Mit Adsorptionstrocknern werden Drucktaupunkte von bis zu -70°C erzielt.

Die Anwendungsbereiche von Druckluft, getrocknet mit Adsorptionstrocknern, sind im Allgemeinen frostgefährdete Installationen im Außenbereich und Druckluftanwendungen mit sehr hohen Anforderungen an den Trocknungsgrad, z.B. Prozessluft in den Bereichen Lebensmittel, Elektronik, Pharmazie, Chemie, Messtechnik, Verfahrenstechnik, etc. Adsorptionstrockner werden aufgrund ihrer beliebig skalierbaren Baugröße sowohl in der zentralen als auch dezentralen Druckluftaufbereitung eingesetzt.

Adsorptionstrockner entziehen der Druckluft direkt die Feuchtigkeit. Das in Adsorptionstrocknern eingesetzte Trockenmittel bindet Wassermoleküle und trennt hochgradig die Feuchtigkeit von der Druckluft ab. Um einen kontinuierlichen Betrieb zu ermöglichen, bestehen Adsorptionstrockner aus zwei, mit Trockenmittel gefüllten Behältern, die wechselweise zur Trocknung der Druckluft (Adsorption) und zur Regeneration des Trockenmittels eingesetzt werden.

Adsorptionstrockner sind für den Dauerbetrieb geeignet und für alle Volumenstrom- und Druckbereiche erhältlich. Adsorptionstrockner bieten zusätzlich unterschiedliche Regenerationsarten für eine wirtschaftliche Drucklufttrocknung in den verschiedenen Leistungsbereichen.

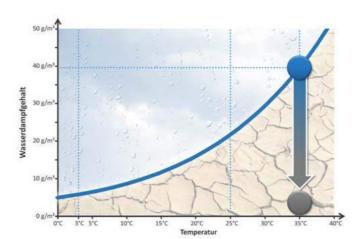

Membrantrockner

Mit Membrantrocknern werden Drucktaupunkte von bis zu -40°C erzielt.

Die Anwendungsbereiche von Druckluft, getrocknet mit Membrantrocknern, sind Druckluftanwendungen mit erhöhten Anforderungen an den Trocknungsgrad und geringem Druckluftbedarf (< 50 m³/h), z.B. Messtechnik, Prüfstellen, etc. Membrantrockner werden aufgrund ihres Funktionsprinzips und ihrer Kenndaten nur zur Trocknung von geringen Volumenströmen eingesetzt.

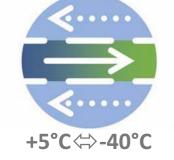
Membrantrockner bestehen aus einer Vielzahl an Hohlfasermembranen, durch die ausschließlich Wassermoleküle diffundieren können. Vom Austritt des Membrantrockners entnommene, expandierte Druckluft wird auf die Außenseite der Hohlfasern geleitet und entzieht der in den Hohlfasern strömenden Druckluft die Feuchtigkeit. Die Membrantrocknertechnologie ermöglich kleine, kompakte Bauformen und benötigt keine elektrische Energie.

Membrantrockner sind für den Dauerbetrieb geeignet und für geringe Volumenströme erhältlich. Der Druckbereich geht in der Regel bis 12 bar.


Anwendungsgebiet:

- Drucklufttrocknung in der zentralen Druckluftaufbereitung auf einen "Grundtrockungsgrad", geeignet für alle Volumenstrombereiche
- Drucklufttrocknung bei frostfreien Innenrauminstallationen mit Temperaturen über 5°C
- Drucklufttrocknung für Anwendungen mit geringen Anforderungen an den Trocknungsgrad der Druckluft, z.B.
- Steuerluft für Pneumatikanwendungen
- Blasluft
- Druckluftwerkzeuge
- ...

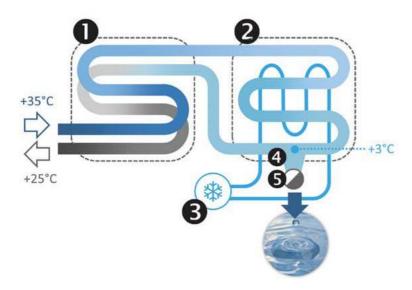
10 g/m³ 10 g/m³


Anwendungsgebiet:

- Drucklufttrocknung in der zentralen oder dezentralen Druckluftaufbereitung auf einen hohen Trocknungsgrad, geeignet für alle Druck- und Volumenstrombereiche
- Drucklufttrocknung bei frostgefährdeten Installationen im Außenbereich mit Temperaturen unter 5°C
- Drucklufttrocknung für Anwendungen mit sehr hohen Anforderungen an den Trocknungsgrad der Druckluft, z.B.
- Elektronikindustrie
- Lebensmittelindustrie
- Prüfmittel, Messapparaturen
-

Anwendungsgebiet:

- Drucklufttrocknung für geringe Volumenströme
- Erhöhung des Trocknungsgrades für spezifische Anwendungen mit geringem Druckluftverbrauch, z.B.
- Einzelne Produktionsmaschinen
- Prüfmittel, Messapparaturen
-



-25°C ⇔-70°C

Kältetrockner

Aufbau und Funktion

Kältetrockner bestehen aus zwei Wärmetauschern und einem geregelten Kältemittelkreislauf.

Die eintretende Druckluft wird im ersten Wärmetauscher, dem Luft-Luft-Wärmetauscher 1, durch die gekühlte, austretende kalte Druckluft im Gegenstrom vorgekühlt.

Im zweiten Wärmetauscher, dem Kältemittel-Luft-Wärmetauscher 2, wird die Druckluft durch den angeschlossenen Kältemittelkreislauf 3 auf ihre niedrigste Temperatur abgekühlt.

Während des gesamten Abkühlvorganges fällt die in der Druckluft enthaltene Feuchtigkeit als Kondensat aus, das zentral gesammelt 4 und automatisch abgeleitet 5 wird. Abschließend wird die Druckluft wieder im Luft-Luft-Wärmetauscher 1 durch die warme, eintretende Druckluft im Gegenstrom erwärmt und dadurch in einen untersättigten Zustand gebracht. Es kann kein Kondensat mehr entstehen, solange die Drucklufttemperatur den Drucktaupunkt nicht unterschreitet.

Steuerungsarten

Um ein Einfrieren des Kältetrockners bei Teillast zu vermeiden, muss die vom Kältekreislauf erzeugte Kälteleistung reguliert werden.

Heißgas-Bypass Regelung Serie DFX

Bei der Heißgas-Bypass Regelung wird die Kälteleistung mittels eines einfachen, mechanischen Proportionalreglers geregelt. Abhängig von der Auslastung des Kältetrockners leitet der Proportionalregler einen Teil der Kälteleistung um und regelt damit die dem Kältemittel-Luft-Wärmetauscher zugeführte Kältemenge.

Die Heißgas-Bypass Regelung erlaubt kompakte Bauformen von Kältetrocknern und ist aufgrund ihrer einfachen Bauart vorteilhaft bei Kältetrocknern im unteren bis mittleren Leistungsbereich.

2-Punkt Regelung Serie DFE

Bei der 2-Punkt Regelung wird der Kältekreislauf mit einem thermischen Massenspeicher kombiniert. Abhängig von der Auslastung des Kältetrockners wird der Kältekreislauf zur Regulierung der Kälteleistung an- bzw. abgeschaltet. Der thermische Massenspeicher glättet den Temperaturverlauf und sorgt für geeignete Schaltintervalle.

Mit einer 2-Punkt Regelung können, abhängig von der Auslastung des Kältetrockners, hohe Energieeinsparungen erzielt werden. Die 2-Punkt Regelung ist vorteilhaft bei Kältetrocknern im mittleren und hohen Leistungsbereich.

Kaskaden- bzw. Drehzahl-Regelung Serie DFL..

Bei der Kaskaden-Regelung wird die vom Kältekreislauf erzeugte Kälteleistung durch das Zu- und Abschalten von Kältekompressoren reguliert.

Bei der Drehzahlregelung wird der Kältekompressor im Kältekreislauf drehzahlgeregelt, die Kälteleistung somit direkt proportional zur Auslastung des Kältetrockners reguliert.

Abhängig von der Auslastung des Kältetrockners können hohe Energieeinsparungen erzielt werden. Die Kaskaden- bzw. Drehzahl-Regelung ist vorteilhaft bei Kältetrocknern im hohen Leistungsbereich.

Darauf müssen Sie achten!

"Energiefresser"

Hoher Differenzdruck

Aufwendige Verrohrungen, zu klein dimensionierte Rohrleitungsquerschnitte oder Wärmetauscher erzeugen hohe Druckverluste. Druckverluste müssen vom Druckluftkompressor mit hohem, zusätzlichem Energieeinsatz kompensiert werden.

Niedriger Differenzdruck

Vollintegrierte, großzügig dimensionierte Wärmetauscher und großzügig dimensionierte Anschlussquerschnitte bieten niedrige Druckverluste. Je geringer die Druckverluste, desto geringer ist der Betriebsdruck des Druckluftkompressors und desto geringer ist seine Leistungsaufnahme.

"Energiesparer"

Hohe thermische Verluste

Durch eine unzureichende oder unvollständige Isolierung geht Kälte an die Umgebung verloren. Das ist Kälte, die nicht mehr für den Trocknungsprozess zur Verfügung steht und vom Kältekompressor mit zusätzlichem Energieeinsatz erzeugt werden muss.

Niedrige thermische Verluste

Durch eine hochwertige und vollständige Isolierung werden die thermischen Verluste minimiert. Die vom Kältekreislauf erzeugte Kälteleistung wird vollständig dem Trocknungsprozess zugeführt und mit maximaler Effizienz verwertet.

Zeitgesteuerte Kondensatableiter

Zeitgesteuerte Kondensatableiter leiten Kondensat in festen, voreingestellten Taktzeiten ab. Die in Druckluftsystemen entstehenden Kondensatmengen sind jedoch stark schwankend, abhängig von den Betriebsbedingungen. Bei einer zeitgesteuerten Kondensatableitung entsteht daher ein Kondensatrückstau bei zu langen Taktzeiten oder hohe Druckluftverluste bei zu kurzen Taktzeiten. Das ist Druckluft, die vom Druckluftkompressor mit hohem Energieeinsatz erzeugt wurde.

Niveaugesteuerte Kondensatableiter

Niveaugesteuerte Kondensatableiter erfassen über eine integrierte Füllstandsmessung die anfallende Kondensatmenge und leiten das Kondensat automatisch, verlustfrei sowie elektronisch gesteuert und überwacht ab.

Energetisch effiziente Kältetrockner bieten gleichzeitig die niedrigsten Gesamtkosten, bestehend aus Energie- (≥70%), Wartungs- und Anschaffungskosten.

Zusätzlich sollten bei Kältetrocknern die Kriterien der Betriebssicherheit, Langlebigkeit, Langzeitstabilität und Servicefreundlichkeit bewertet werden, die ebenfalls Einfluss auf die Gesamtkosten haben.

i

Kältetrockner sollten prinzipiell mit einem Vorfilter ausgestattet werden, der direkt am Eingang des Kältetrockners montiert ist. Ein Vorfilter ist aus gesamt-energetischer Sicht sinnvoll und bietet die folgenden Vorteile:

- Kondensat, das in den Rohrleitungen zum Kältetrockner entstanden ist, wird vor dem Trocknungsprozess aus der Druckluft entfernt. Dadurch steht die vollständige Kälteleistung des Kältetrockners zur Drucklufttrocknung zur Verfügung.
- In der Druckluft enthaltene, ölige Verunreinigungen und weitere Verschmutzungen werden entfernt und gelangen somit nicht in die Wärmetauscher des Kältetrockners. Mit Öl und Schmutz belastete Wärmetauscher weisen höhere Wärmeübergangswiderstände auf, wodurch die Effizienz des Trocknungsprozesses sinkt. Ferner können ölige Verunreinigung die Wärmetauscher Schicht für Schicht belegen und letztendlich zur Verblockung der Wärmetauscher führen.

A

Kältetrockner unterliegen der Richtlinie 842/2006/EG zur Reduzierung der Emissionen von fluorierten Treibhausgasen. Nähere Informationen dazu finden Sie auf www.fstweb.de

Die Vorteile auf einen Blick Kältetrockner DFX, DFE

Feine Leistungsabstufung für eine optimierte Baugrößenauswahl

Mit insgesamt 22 Baugrößen bieten FST Kältetrockner eine sehr feine Abstufung, die eine leistungs- und kostenoptimierte Baugrößenauswahl für den jeweiligen, individuellen Bedarf ermöglicht. Die feine Abstufung bietet ein für den jeweiligen Leistungsbedarf technisch optimal abgestimmtes "Kältetrocknersystem" mit minimalem Platzbedarf bei geringst möglichen Kosten.

✓ Minimale Gesamtbetriebskosten

Robustes Gehäuse mit langlebiger Beschichtung

FST Kältetrockner haben ein robustes Metall-Gehäuse mit überdurchschnittlich hohen Wandstärken, das mit einer widerstandsfähigen und langlebigen Pulverbeschichtung versehen ist – für einen ruhigen, vibrations- und geräuscharmen Betrieb.

✓ Robuste Ausführung und lange Lebensdauer

Vollintegrierte, vollständig thermoisolierte Wärmetauscher

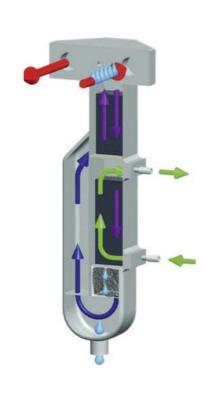
Die vollintegrierten Aluminium-Wärmetauscher vereinen alle für eine zuverlässige und wirtschaftliche Trocknung erforderlichen Komponenten eines Kältetrockners – den Luft-Luft-Wärmetauscher, den Kältemittel-Luft-Wärmetauscher und das Kondensat-Abscheidesystem – in einer kompakten, leckage-freien Einheit. Die Integration aller Wärmeübergangsprozesse in nur eine, großzügig dimensionierte und vollständig wärmeisolierte Einheit bietet eine hocheffiziente Trocknung und einen energiesparenden Betrieb bei minimierten thermischen Verlusten und reduzierten Differenzdrücken.

✓ Maximale Betriebssicherheit

✓ Minimale Gesamtbetriebskosten

– energieeffiziente, verlustarme Wärmeübergangsprozesse

– niedrige Differenzdrücke


✓ Robuste Ausführung und lange Lebensdauer

Hohe Überlastsicherheit

Durch den groß dimensionierten Kältekreislauf, im Besonderen den großzügig ausgelegten und belüfteten Kältemittel-Verflüssiger, bieten FST Kältetrockner eine überdurchschnittlich hohe Überlastsicherheit. Eine Sicherheitsabschaltung des Kältetrockners erfolgt erst bei Drucktaupunkten von über 20°C. Somit sorgen FST Kältetrockner, selbst bei zeitweise ungünstigsten Betriebsbedingungen, für eine ausreichende Drucklufttrocknung und bieten eine hohe Verfügbarkeit.

✓ Maximale Betriebssicherheit

✓ Robuste Ausführung und lange Lebensdauer

Abnehmbare Seitenpaneele

Die abnehmbaren Seitenpaneele gestatten einen einfachen und großräumigen Zugang zum gesamten Innenleben der Kältetrockner für Reinigungs- und Wartungsarbeiten.

√ Hohe Servicefreundlichkeit

Elektronische, niveaugesteuerte Kondensatableiter

Alle Kältetrockner sind serienmäßig mit elektronischen, niveaugesteuerten Kondensatableitern ausgestattet. Niveaugesteuerte Kondensatableiter erfassen über ihre integrierte Füllstandsmessung die anfallende Kondensatmenge und leiten das Kondensat automatisch, verlustfrei sowie elektronisch gesteuert und überwacht ab.

✓ Maximale Betriebssicherheit
 ✓ Minimale Gesamtbetriebskosten

- energieeffiziente Kondensatableitung

Energiesparsteuerung

Kältetrockner der Baureihe DFE sind mit einer Energiesparsteuerung mit 2-Punkt-Regelung ausgestattet. Abhängig von der Auslastung des Kältetrockners und somit von der erforderlichen Kälteleistung wird der Kältekreislauf an- und abgeschaltet. Die dadurch erzielten Energiespar-Phasen ermöglichen im Teillastbetrieb Energieeinsparungen von in der Regel 20-60%. Der massive, vollintegrierte und vollisolierte Wärmetauscher übernimmt mit seiner thermischen Masse die Funktion des Kältespeichers und glättet den Drucktaupunktverlauf.

✓ Minimale Gesamtbetriebskosten

- energieeffiziente Steuerung

Umfangreiche Serienausstattung

Zur Serienausstattung aller Kältetrockner zählen neben elektronischen, niveaugesteuerten Kondensatableitern eine Steuerung mit potentialfreiem Störmeldekontakt und frei wählbaren Alarmwert, eine Drucktaupunktanzeige (Kältemitteldruck) und ein Betriebshauptschalter.

Die Baureihe DFX bietet zusätzlich bereits installiert ein Netzkabel mit Stecker und eine Kondensatleitung.

Einfache, platzsparende Installation und Wandmontage

Bei der Baureihe DFX erfolgen alle für den Betrieb eines Kältetrockners erforderlichen Anschlüsse seitwärts auf nur einer Seite. Die Kältetrockner können platzsparend, bis direkt an eine Wand, aufgestellt werden. Die Baugrößen DFX 2 bis DFX 15 sind zusätzlich serienmäßig für eine Wandmontage vorbereitet.

Bei der Baureihe DFE erfolgt der Druckluftanschluss von oben, alle weiteren Anschlüsse seitwärts auf nur einer Seite. Durch den Lüftungseinlass vorne und den Auslass oben ist auch mit der DFE Baureihe eine platzsparende Aufstellung, bis direkt an eine Wand, möglich.

Filtrations-Separations-Technic

Serie DFX, DFE

Drucktaupunkte: bis zu +3°C

Volumenstrom: 20 m³/h bis 1.650 m³/h

Anschluss: G 3/8 bis G 2½

Ihre Vorteile:

√ Feine Leistungsabstufung

 – 22 Baugrößen für eine leistungs- und kostenoptimierte Baugrößenauswahl

√ Robustes Metall-Gehäuse

- massive Gehäuse mit hohen Wandstärken
- hochwertige, langlebige Pulverbeschichtung

√ Abnehmbare Seitenpaneele

- großräumiger Zugang
- einfache Reinigung und Wartung

√ Vollintegrierte, vollständig thermoisolierte Wärmetauscher

- niedriger Differenzdruck
- leckage-frei
- niedrige thermische Verluste

√ Hohe Überlastsicherheit

 zuverlässige Trocknung, selbst bei zeitweise ungünstigen Bedingungen

√ Niveaugesteuerte Kondensatableiter

 bedarfsgesteuerte, automatische und verlustfreie Kondensatableitung

√ Energiesparsteuerung (DFE)

 Energie-Einsparungen im Teillastbetrieb von in der Regel 20-60%

✓ Einfache, platzsparende Installation

- Ein-/Ausgänge seitwärts bzw. oben
- Aufstellung bis direkt an eine Wand möglich
- vorbereitet für Wandmontage (DFX 2-15)

√ Umfangreiche Serienausstattung

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- ✓ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Kältetrockner – das Mindestmaß an Trocknungsgrad für jede Druckluftanwendung

Kältetrockner der Serie DFX und DFE trocknen die Druckluft auf Drucktaupunkte von bis zu +3°C. Sie erzeugen damit trockene, mit Feuchtigkeit untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Kältetrockner der Serie DFX und DFE bestehen aus bis 14 bar bzw. 16 bar druckbeständigen, vollintegrierten Aluminium-Wärmetauschern, an die ein geregelter Kältemittelkreislauf angeschlossen ist. Die vollintegrierten Wärmetauscher vereinen den Luft-Luft-Wärmetauscher, den Kältemittel-Luft-Wärmetauscher und das Kondensat-Abscheide-

system in einer kompakten, leckage-freien Einheit. Die Integration aller Wärmeübergangsprozesse eines Kältetrockners in nur einer, wärmeisolierten Einheit bietet eine hocheffiziente Trocknung und einen energiesparenden Betrieb bei minimierten thermischen Verlusten und reduzierten Differenzdrücken. Die Teillaststeuerung erfolgt bei Kältetrocknern der Serie DFX durch eine Heißgas-Bypass-Regelung, bei Kältetrocknern der Serie DFE durch eine Energiesparsteuerung mit 2-Punkt Regelung.

Kältetrockner der Serie DFX und DFE sind serienmäßig mit elektronischen, niveaugesteuerten Kondensatableitern, einer Steuerung mit potentialfreiem Störmeldekontakt

und frei wählbarem Alarmwert, Drucktaupunktanzeige und Betriebshauptschalter ausgestattet.

Verfügbares Zubehör

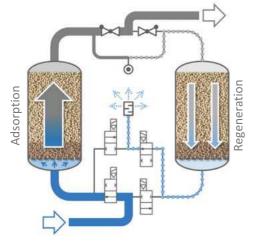
Bypass-Leitung

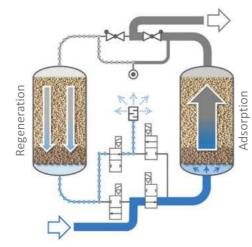
Umschaltsteuerung

Technische Daten

Baugröße	Nominaler Volumenstrom* ¹	Min./Max. zul. Betriebsüberdruck	Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DFX 2	20 m³/h	2 - 16 bar	G 3/8		645 mm	360 mm	410 mm	24 kg
DFX 4	35 m³/h	2 - 16 bar	G 1/2		645 mm	360 mm	410 mm	26 kg
DFX 5	50 m³/h	2 - 16 bar	G 1/2		645 mm	360 mm	410 mm	27 kg
DFX 7	65 m³/h	2 - 16 bar	G 1/2		645 mm	360 mm	410 mm	29 kg
DFX 9	85 m³/h	2 - 16 bar	G 1/2	230 V / 50-60 Hz	645 mm	360 mm	410 mm	31 kg
DFX 11	105 m³/h	2 - 16 bar	G 1/2		645 mm	360 mm	410 mm	31 kg
DFX 13	125 m³/h	2 - 14 bar	G 1		645 mm	360 mm	410 mm	33 kg
DFX 15	150 m³/h	2 - 14 bar	G 1		645 mm	360 mm	410 mm	33 kg
DFX 18	180 m³/h	2 - 14 bar	G 1 ¼		870 mm	480 mm	660 mm	55 kg
DFX 23	225 m³/h	2 - 14 bar	G 1 ¼]	870 mm	480 mm	660 mm	56 kg
DFX 30	300 m³/h	2 - 14 bar	G 1 ¼		870 mm	480 mm	660 mm	57 kg
DFX 36	360 m³/h	2 - 14 bar	G 1 ½		870 mm	480 mm	660 mm	61 kg
DFX 45	450 m³/h	2 - 14 bar	G 1 ½	230 V / 50 Hz	870 mm	480 mm	660 mm	68 kg
DFX 55	550 m³/h	2 - 14 bar	G 2]	1055 mm	645 mm	920 mm	116 kg
DFX 65	650 m³/h	2 - 14 bar	G 2	1	1055 mm	645 mm	920 mm	118 kg
DFX 75	750 m³/h	2 - 14 bar	G 2		1055 mm	645 mm	920 mm	121 kg
DFX 85	850 m³/h	2 - 14 bar	G 2	1	1055 mm	645 mm	920 mm	155 kg
DFE 55	550 m³/h	2 - 16 bar	G 2		1230 mm	904 mm	805 mm	150 kg
DFE 65	650 m³/h	2 - 16 bar	G 2		1230 mm	904 mm	805 mm	152 kg
DFE 75	750 m³/h	2 - 16 bar	G 2		1230 mm	904 mm	805 mm	166 kg
DFE 85	850 m³/h	2 - 16 bar	G 2		1230 mm	904 mm	805 mm	175 kg
DFE 100	1.000 m³/h	2 - 16 bar	G 2 ½	400 V / 50 Hz	1230 mm	904 mm	805 mm	177 kg
DFE 120	1.175 m³/h	2 - 16 bar	G 2 ½		1230 mm	904 mm	805 mm	180 kg
DFE 135	1.350 m³/h	2 - 16 bar	G 2 ½		1230 mm	904 mm	805 mm	185 kg
DFE 150	1.500 m³/h	2 - 16 bar	G 2 ½		1230 mm	904 mm	805 mm	190 kg
DFE 165	1.650 m³/h	2 - 16 bar	G 2 ½		1230 mm	904 mm	805 mm	196 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt 5°C (DFX) bzw. 3°C (DFE)




Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Adsorptionstrockner

Aufbau und Funktion

Abbildungen am Beispiel eines kaltregenerierten Adsorptionstrockners

Adsorptionstrockner bestehen aus zwei Druckbehältern, die jeweils mit Trockenmittel gefüllt sind und durch Umschaltung wechselweise betrieben werden. Durch einen Behälter strömt die zu trocknende Druckluft, der vom Trockenmittel hochgradig die Feuchtigkeit entzogen wird (Adsorption). Im zweiten Behälter wird gleichzeitig die dort im Trockenmittel gespeicherte Feuchtigkeit entfernt (Regeneration). Ist das Trockenmittel im Behälter, in dem die Adsorption stattfindet, mit Feuchtigkeit gesättigt, wird zwischen den Behältern umgeschaltet und der Prozess beginnt von vorne. Einen kompletten Durchlauf von Adsorption und Regeneration auf einem Behälter nennt man Zyklus, die dafür erforderliche Zeit die Zykluszeit.

Regenerationsarten

Serie DPS, DHM, DHW Bei der Kaltregeneration wird für die Regeneration des Trockenmittels ein Teil der getrockneten Druckluft vom Austritt des Trockners entnommen, auf Umgebungsdruck entspannt und durch den zu regenerierenden Behälter geleitet. Die getrocknete, entspannte und dadurch

Kalt-Regeneration

extrem mit Feuchtigkeit untersättigte Luft entzieht dem Trockenmittel die gespeicherte Feuchtigkeit und gibt diese über einen Schalldämpfer an die Umgebung ab.

Das Wechselintervall zwischen Adsorption und Regeneration beträgt bei FST Trocknern der Baureihe DPS bei nominalen Bedingungen 5 Minuten. Die Zykluszeit ist folglich 10 Minuten.

Warm-Regeneration Serie DTS

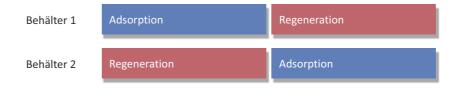
Bei der Warmregeneration wird für die Regeneration des Trockenmittels von einer Vakuumpumpe/Gebläse Umgebungsluft angesaugt, auf ca. 160°C erhitzt und durch den zu regenerierenden Behälter geführt.

Die heiße Luft entzieht dem Trockenmittel die gespeicherte Feuchtigkeit und gibt diese am Austritt an die Umgebung ab. Steht keine Umgebungsluft in geeigneter Qualität zur Verfügung, kann alternativ expandierte Druckluft verwendet wer-

Das Wechselintervall zwischen Adsorption und Regeneration beträgt bei FST Trocknern der Baureihe DTS bei nominalen Bedingungen 6 Stunden. Die Zykluszeit ist folglich 12 Stunden.

Regeneration mit Kompressorwärme Serie DTC

Bei der Warmregeneration mit Nutzung der Kompressorwärme wird heiße Druckluft von einem ölfrei verdichtenden Kompressor für die Regeneration des Trockenmittels eingesetzt.

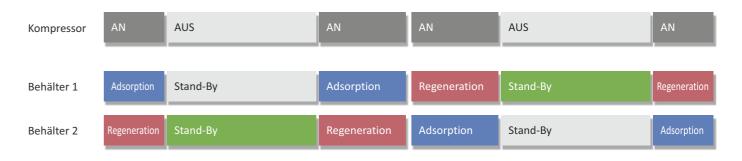

Die heiße Druckluft entzieht dem Trockenmittel die gespeicherte Feuchtigkeit und wird anschließend einem Kondensationskühler zugeführt. Dort kondensiert die Feuchtigkeit aus und wird als Kondensat abgeleitet.

Das Wechselintervall zwischen Adsorption und Regeneration beträgt bei FST Trocknern der Baureihe DTC bei nominalen Bedingungen 3 Stunden. Die Zykluszeit ist folglich 6 Stunden.

Steuerungsarten


Fester Zyklus

Im festen Zyklus arbeitet ein Adsorptionstrockner mit festen Zykluszeiten unter der Annahme einer permanenten Volllastsituation, unabhängig von den Eintrittsbedingungen. Die Adsorptions- und Regenerationsphase ist gleich lang.


Variabler Zyklus mit beladungsabhängiger Steuerung

Im variablen Zyklus mit beladungsabhängiger Steuerung erfasst ein Taupunktsensor am Austritt des Adsorptionstrockners den Drucktaupunkt und verlängert, abhängig von den tatsächlichen Eintrittsbedingungen, die Adsorptionszeit. Durch die verlängerte Adsorptionszeit entstehen Energiespar-Phasen, in denen keine Regenerationsenergie benötigt wird. Dadurch können Energieeinsparungen von bis zu 90% erzielt werden.

Kompressor-Gleichlaufsteuerung

Die Kompressor-Gleichlaufsteuerung wird in der Regel bei kaltregenerierten Adsorptionstrocknern eingesetzt und kann sowohl im festen als auch variablen Zyklus angewendet werden. Bei der Kompressor-Gleichlaufsteuerung ist der Adsorptionstrockner mit dem Druckluftkompressor synchronisiert. Stoppt der Kompressor, wird keine Druckluft zum Trocknen erzeugt und der Adsorptionstrockner stoppt seinen Zyklus (Stand-By). Startet der Kompressor, führt der Adsorptionstrockner ebenfalls seinen Zyklus wieder fort. In den Stand-By Phasen wird keine Regenerationsenergie benötigt. Dadurch können erhebliche Energieeinsparungen erzielt werden.

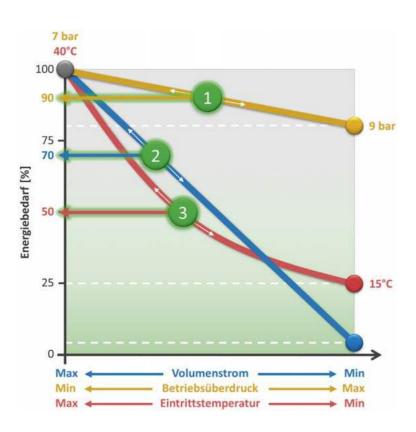
Die Zykluszeit ist bei der Kompressor-Gleichlaufsteuerung theoretisch unendlich, sollte jedoch 1 Tag nicht überschreiten.

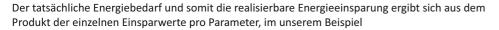
Detaillierte Informationen über die unterschiedlichen Regenerations- und Steuerungsarten finden Sie auf www.fstweb.de im Bereich Produkte/Trocknung/Adsorptionstrocknung

Adsorptionstrockner

Energiesparpotential der beladungsabhängigen Steuerung

Die Auslegung von Adsorptionstrocknern erfolgt stets für den Volllastbetrieb, d.h. maximaler Volumenstrom, minimaler Betriebsüberdruck und maximale Eintrittstemperatur, um auch bei entsprechend hoher Auslastung den gewünschten Drucktaupunkt sicher zu erreichen.


Im Volllastbetrieb ist die Adsorptions- und Regenerationsphase gleich lang. Es besteht ein permanenter Bedarf an Regenerationsenergie.


Im Regelfall sind die genannten Volllast-Betriebsbedingungen jedoch nur selten gleichzeitig gegeben, bedingt durch:

- Jahreszeitliche Veränderungen der Eintrittstemperatur
- Veränderungen des Betriebsüberdruckes innerhalb seines Druckbandes
- Variierende Volumenströme durch Bedarfsschwankungen

Mit einem Taupunktsensor ausgestattete Adsorptionstrockner sind in der Lage, eine derartige Teillastsituation zu erkennen und entsprechende Energiespar-Phasen zu realisieren.

Die möglichen Energiesparpotentiale können mit dem folgenden Diagramm am Beispiel eines kaltregenerierten Adsorptionstrockners näherungsweise bestimmt werden.

Tatsächliche Energiebedarf = 90% x 70% x 50% = 32%, d.h. 68% Energieeinsparung

Die Frage, welche Regenerationsart und welche Steuerungsart für einen individuellen Anwendungsfall nun die Beste ist, sollte eine professionelle Wirtschaftlichkeitsberechnung beantworten. Die erzielbaren Energieeinsparungen und die daraus resultierenden Gesamtkosten bzw. Amortisationszeiten durch die individuell angepasste Wahl und Auslegung des Trockners sind enorm. Sie können mitunter Werte bis zu 90% erreichen.

Darauf müssen Sie achten!

"Energiefresser"

"Billiges" Trockenmittel

Hohe Regenerationsluftmengen bei kaltregenerierten Adsorptionstrocknern und hohe Regenerationstemperaturen bei warmregenerierten Adsorptionstrocknern fordern einen hohen Energiebedarf für die Regeneration.

Kurze Zykluszeiten

Je kürzer die Zykluszeit, desto häufiger ist ein Druckaufbau des regenerierten Behälters erforderlich, desto höher ist der Druckluftverbrauch. Kurze Zykluszeiten sind in der Regel bedingt durch das Trockenmittel selbst oder durch reduzierte Trockenmittelmengen.

Betrieb ohne taupunktabhängige Steuerung

Ohne taupunktabhängige Steuerung besteht ein permanenter Regenerationsenergiebedarf unabhängig von der Auslastung des Adsorptionstrockners. Da Adsorptionstrockner in der Regel durch variierende Volumenströme, Betriebsdrücke und Eintrittstemperaturen im Teillastbetrieb arbeiten, werden entsprechende Energiesparmöglichkeiten nicht genutzt.

Regenerationsverfahren mit Spülluftbedarf

Einige Regenerationsverfahren bei warmregenerierten Adsorptionstrocknern benötigen Spülluft. Spülluft sind größere Mengen getrockneter Druckluft, die über einen längeren Zeitraum zur Unterstützung der Kühlphase benötigt werden. Spülluft muss vom Druckluftkompressor mit hohem, zusätzlichem Energieeinsatz erzeugt werden.

Nur "Standardlösungen" verfügbar

Fehlt bei warmregenerierten Adsorptionstrocknern die Möglichkeit kundenseitig vorhandene Wärme- oder Kältequellen zu nutzen, z.B. Heißdampf, Heißwasser, Kühlwasser, etc., müssen die für die Regeneration erforderlichen thermischen Energien durch den Einsatz elektrischer Energie erzeugt werden.

"Energiesparer"

Hochwertiges Trockenmittel

Hochwertige Trockenmittel erzielen stabile, tiefe Drucktaupunkte bei geringstmöglichem Energieeinsatz für die Regeneration und bieten in der Regel gleichzeitig eine deutlich bessere Langzeitstabilität und längere Nutzungsdauer.

Lange Zykluszeiten bieten die geringstmögliche Anzahl an Druckaufbauphasen und somit den geringstmöglichen Druckluftverbrauch, realisiert durch den Einsatz hochwertiger Trockenmittel und entsprechender Trockenmittelmengen.

Betrieb mit taupunktabhängiger Steuerung

Eine taupunktabhängige Steuerung realisiert Energiespar-Phasen ohne Regenerationsenergiebedarf von bis zu 230 Minuten bei kaltregenerierten Adsorptionstrocknern (96%) und bis zu 84 Stunden bei warmregenerierten Adsorptionstrocknern (88%) pro Zyklus. In der Regel werden mit taupunktabhängiger Steuerung Einsparungen von 20-70% erzielt.

Regenerationsverfahren ohne Spülluftbedarf

Es stehen Regenerationsverfahren ohne Spülluftbedarf zur Verfügung, z.B. schnelles Kühlen mit Vakuum oder Kühlen im geschlossenen Kreislauf. Es wird keine Druckluft während der gesamten Regenerationsphase benötigt.

Einbindung externer Wärme- oder Kältequellen

Durch die Einbindung kundenseitig vorhandener Wärme- oder Kältequellen, z.B. Heißdampf, Heißwasser, Kühlwasser, etc., können enorme Energieeinsparungen realisiert werden. Diese kostengünstigeren Wärmeträger reduzieren die Energiekosten des Adsorptionstrockners.

Energetisch effiziente Adsorptionstrockner bieten gleichzeitig die niedrigsten Gesamtkosten, bestehend aus Energie- (≥80%), Wartungs- und Anschaffungskosten. Zusätzlich sollten bei Adsorptionstrocknern die Kriterien der Betriebssicherheit, Langlebigkeit, Langzeitstabilität und Servicefreundlichkeit bewertet werden, die ebenfalls Einfluss auf die Gesamtkosten haben.

Die Vorteile auf einen Blick Adsorptionstrockner alle Baureihen

Druckbehälter MADE IN GERMANY mit hochwertiger Beschichtung

Die Druckbehälter von FST Adsorptionstrocknern stammen aus deutscher Fertigung und wurden unter Anwendung eines zertifizierten Qualitätsmanagementsystems hergestellt. Die Druckbehälter sind ausgelegt, gefertigt und geprüft nach anerkannten Regelwerken (AD2000 Merkblätter, Richtlinie 97/23/EG) und erfüllen damit die höchsten und aktuellsten Sicherheitsstandards.

Internationale Abnahmen wie ASME (USA), GOST (Russland), SQL (China Stamp), AS1210 (Australien), etc. oder anwendungsspezifische Abnahmen wie DNV (Det Norske Veritas), Germanischer Lloyd, etc. sind verfügDie hochwertige und langlebige Beschichtung der Druckbehälter ist ein zusätzlicher Garant für eine lange Lebensdauer und den sicheren Betrieb des Adsorptionstrockners. Alle Druckbehälter werden vor der Beschichtung sandgestrahlt (ISO 8501) und anschließend mit einer Pulverbeschichtung bzw. zwei Schichten Nasslack (Grundierung und Decklack) versehen.

Vollständig verzinkte Rohrleitungen vervollständigen den Anspruch von FST an einen hochwertigen und langlebigen Adsorptionstrockner.

- √ Maximale Betriebssicherheit
- ✓ Robuste Ausführung und lange Lebensdauer

Edelstahl-Siebboden und Adsorption von unten nach oben

Alle FST Adsorptionstrockner verfügen über einen Strömungsfreiraum am Eintritt zur Trockenmittelschüttung, erzeugt durch ein in die Behälter eingebrachtes Edelstahl-Drahtgewebe bzw. einen Edelstahl-Siebboden. Kombiniert mit der Strömungsrichtung für die Adsorption von unten nach oben, sorgt der Strömungsfreiraum, neben einer Vorabscheidung von flüssigen Verunreinigungen aus der Druckluft, für eine optimale Luftverteilung über die gesamte Querschnittsfläche. Das Ergebnis ist eine gleichmäßige Durchströmung des Trockenmittels über das gesamte Füllvolumen ohne Toträume oder "Feuchtenester" im Trockenmittelbett.

Die Vorabscheidung von flüssigen Verunreinigungen vermindert die Beladung des Trockenmittels mit flüssigem Kondensat sowie die Verklebung des Trockenmittels durch ölhaltige Verunreinigungen aus der Druckluft. Die Lebensdauer des Trockenmittels wird dadurch verlängert. Durch die gleichmäßige Durchströmung des Trockenmittels über die gesamte Füllfläche wird eine maximale Trocknungswirkung erzielt bei gleichzeitig reduziertem Differenzdruck. Zudem vereinfacht sich der Trockenmittelwechsel durch den kontrollierten Ablass des Trockenmittels seitwärts aus den Behältern.

- ✓ Minimale Gesamtbetriebskosten
- leistungsstabile und langlebige Trockenmittelschüttungen
- effiziente und leistungsfähige Trocknung
- niedrige Differenzdrücke
- √ Hohe Servicefreundlichkeit

Adsorptionstrockner mit Siebboden erkennt man an den Entleerungsstutzen oberhalb der unteren Schweißnaht des Druckhehälters

Hochwertige Trockenmittel mit Mischbett-Schüttung

Hochwertige, robuste Trockenmittel sind die Grundlage für eine wirtschaftliche, leistungsfähige und leistungsstabile Adsorptionstrocknung.

Kaltregenerierte Adsorptionstrockner von FST sind mit dem robusten, langlebigen und hochgradig-trocknenden Trockenmittel Molekularsieb befüllt. Molekularsieb sorgt mit seiner großen spezifischen Oberfläche und hohen Aufnahmekapazität für stabile und niedrige Drucktaupunkte von bis zu -70°C. Dadurch werden lange, energiesparende Zykluszeiten ermöglicht. Molekularsieb verfügt zudem über die besondere Eigenschaft, selbst bei für Trockenmittel ungünstigen Bedingungen dennoch stabile und niedrige Drucktaupunkte zu erreichen, z.B. bei niedriger Eintrittsfeuchte durch einen vorgeschalteten Kältetrockner.

Warmregenerierte Adsorptionstrockner sind mit dem hochkapazitiven, hochgradig-trocknenden Trockenmittel Silikagel N befüllt. Silikagel N verfügt über eine vergleichbar große spezifische Oberfläche und somit Aufnahmekapazität wie Molekularsieb. Es erzielt ebenfalls Drucktaupunkte von bis zu -70°C, benötigt jedoch eine deutlich niedrigere Regenerationstemperatur, wodurch Energieeinsparungen von bis zu 33% erreicht werden.

Alle FST Adsorptionstrockner werden mit einer Mischbett-Schüttung befüllt, d.h. sind mit einer zusätzlichen, wasserfesten Silikagel WS Vorlage am Eintritt der Trockenmittelschüttung versehen. Dadurch werden Zersetzungseffekte des Trockenmittels durch eingetragenes, flüssiges Wasser zuverlässig verhindert. Ein dauerhafter, leistungsstabiler Betrieb des Adsorptionstrockners sowie eine hohe Lebensdauer des Trockenmittels ist sichergestellt.

√ Maximale Betriebssicherheit

✓ Minimale Gesamtbetriebskosten

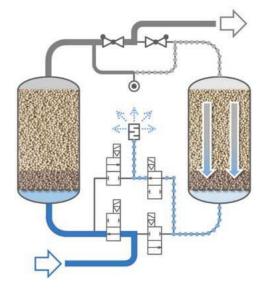
- hochwertige, leistungsstabile und langlebige Trockenmittelschüttungen
- effiziente und leistungsfähige Trocknung
- energieeffiziente Regenerationsverfahren
- geringe Wartungskosten

Trockenmitteltyp	Spezifische Oberfläche	Erforderliche Temperatur zur Warm-Regeneration	Energiebedarf zur Desorption von Wasser
Molekularsieb	800 m²/g	210°C	1,2 kWh/kg
Silikagel N	750 m²/g	160°C	0,8 kWh/kg
Silikagel WS	650 m²/g	160°C	0,8 kWh/kg
Aktiviertes Aluminium	350 m²/g	180°C	1,1 kWh/kg

Die Vorteile auf einen Blick Kaltregenerierte Adsorptionstrockner

Regeneration von oben nach unten

Durch die Regeneration von oben nach unten wird bei der Druckentlastung eine Verwirbelung des oben, frei aufliegenden Trockenmittels vermieden. Dadurch reduziert sich der Trockenmittelabrieb bzw. die Staubentwicklung bei der Regeneration erheblich.

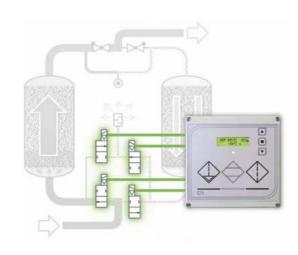

Der Austrag der im Trockenmittel gespeicherten Feuchtigkeit erfolgt bei der Regeneration von oben nach unten entgegen der Strömungsrichtung Adsorption über den unteren, nassen und wasserfesten Bereich am Eintritt des Trockners (Gegenstromprinzip). Am Austritt des Trockners entsteht dadurch

eine hochgradig regenerierte Trockenmittelschicht, die einen stabilen und niedrigen Drucktaupunkt bei der nächsten Umschaltung sicherstellt.

Der reduzierte Trockenmittelabrieb und der Austrag der Feuchtigkeit über den wasserfesten Bereich verlängern zusätzlich die Lebensdauer des Trockenmittels und somit die Leistungsstabilität des gesamten Adsorptionstrockners.

✓ Minimale Gesamtbetriebskosten

 leistungsstabile und langlebige Trockenmittelschüttungen



Einzelventilansteuerung

Jedes Ventil wird einzeln und zeitlich versetzt angesteuert, wodurch ein überschneidungsfreies und druckschlagfreies Umschalten zwischen Adsorption und Regeneration erfolgt. Die Strömungswege durch den Adsorptionstrockner sind zu jeder Zeit eindeutig definiert. Undefinierte Stellungen von passiv bewegten Armaturen (z.B. Shuttle-Ventile) und dadurch der Fehl-

betrieb des Trockners können nicht auftreten. Es besteht zu jeder Zeit ein freier Strömungsweg für die Druckluft, selbst bei Ausfall der Versorgungsspannung. Die Druckluftversorgung nach dem Adsorptionstrockner ist dadurch selbst im Störfall gesichert.

✓ Maximale Betriebssicherheit

DPS 1-8 mit loser Trockenmittelschüttung

Selbst die kleinste DPS Baureihe verfügt über eine lose Trockenmittelschüttung. Das gesamte zur Verfügung stehende Behältervolumen ist vollständig mit Trockenmittel gefüllt – zur Erzielung einer maximalen Trocknungseffizienz bei kompakten und platzsparenden Bauformen. Im Vergleich zu Kartuschenlösungen ist der Trockenmittelwechsel ohne zusätzliche Ausbauhöhe möglich

und durch die Vermeidung von unnötigem Abfall umweltfreundlich und kostensparend.

✓ Minimale Gesamtbetriebskosten

- effiziente und leistungsfähige Trocknung
- niedrige Differenzdrücke
- geringe Wartungskosten

√ Hohe Servicefreundlichkeit

DPS 1-100 mit kompakten Ventilblöcken

Die Ventilblöcke der Baureihen DPS 1-8 und DPS 10-100 bieten großzügig dimensionierte Strömungsquerschnitte. Alle für den Betrieb des Adsorptionstrockners erforderlichen Ventile sind kompakt, frei von mechanischen Verspannungen und praktisch leckage-frei in den Blöcken integriert. Zusätzlich bieten die Ventilblöcke den Vorteil ei-

ner einfachen Demontage und Wartung und somit einer hohen Servicefreundlichkeit.

✓ Minimale Gesamtbetriebskosten

- niedrige Differenzdrückegeringe Wartungskosten
- √ Hohe Servicefreundlichkeit

Effiziente Geräuschreduzierung

Großzügig dimensionierte Schalldämpfer sorgen für eine effiziente Geräuschreduzierung der abströmenden Rege-

nerationsluft. Optional steht eine Geräuschreduzierung auf bis zu 75 dB(A) zur Verfügung.

Die Vorteile auf einen Blick Warmregenerierte Adsorptionstrockner

Mechanisch gekoppelte 4/2-Wegeventile

Pneumatisch angetriebene 4/2-Wegeventile, die mechanisch mit einer Gelenkwelle verbunden sind, garantieren ein überschneidungsfreies, synchrones Umschalten zwischen den Behältern. Ferner besteht zu jeder Zeit ein freier Strömungsweg für die Druckluft, selbst bei Ausfall der Versorgungsspannung. Die Druckluftversorgung nach dem Adsorptionstrockner ist dadurch selbst im Störfall gesichert.

- ✓ Maximale Betriebssicherheit
- ✓ Minimale Gesamtbetriebskosten– niedrige Differenzdrücke
- ✓ Robuste Ausführung und lange Lebensdauer
- √ Hohe Servicefreundlichkeit

Externe Heizung

Eine externe Heizung bietet, im Vergleich zu zwei internen, in die Behälter integrierten Heizungen, viele Vorteile. Außerhalb der Druckbehälter liegend und somit für Wartungsarbeiten einfach und ohne zusätzliche Ausbauhöhe direkt zugänglich, ist die externe Heizung nur in den Regenerationszweig eingebunden. Im Adsorptionszweig entsteht kein Druckverlust durch eine inaktive Heizung im Strömungsweg. Die externe, außerhalb der Behälter liegende Heizung, erlaubt zudem kompaktere Bauformen und die vollständige Befüllung der Druckbehälter mit Trockenmittel. Ferner können durch die externe Anordnung kundenseitig vorhandene Wärmeguellen, z.B. Heißdampf oder Heißwasser, problemlos in das Trocknersystem eingebunden und somit Energiesparpotentiale einfach und kostengünstig umgesetzt werden.

Zum Einsatz kommen hochwertige Heizaggregate mit hoher Leistungsreserve für eine lange Lebensdauer – Heizstäbe mit Edelstahl-Mantelrohr und geringer Oberflächenwärmebelastung (< 4 W/cm²), thermostatischer Überhitzungsschutz, etc.

- ✓ Maximale Betriebssicherheit
- ✓ Minimale Gesamtbetriebskosten
- niedrige Differenzdrücke
- ✓ Robuste Ausführung und lange Lebensdauer
- √ Hohe Servicefreundlichkeit
- ✓ Umfangreiche Optionsmöglichkeiten
 - Einbindung kundenseitiger Energiequellen

Bei warmregenerierten Adsorptionstrocknern erfolgt die Regeneration mit Wärme bei Temperaturen von bis zu 200°C. Zur erfolgreichen Durchführung der Regeneration muss die gesamte Trockenmittelmenge eines Behälters, inklusive dem Behälter selbst, auf diese Temperaturen aufgeheizt und für einige Stunden auf diesem Temperaturniveau gehalten werden. Eine thermische Isolierung der Behälter verbessert den Wirkungsgrad der Regeneration dabei um bis zu 35% und macht das Gesamtsystem unabhängiger von Umgebungstemperaturen und Zugluft.

DTS..V und DTS..BVL -Schnelles Kühlen im Saug-Betrieb (Vakuum) ohne Spülluft

Durch das Kühlen im Saug-Betrieb mit Vakuum erfolgt kein Eintrag von Gebläse-Wärme in der Kühlphase. Die dadurch im Vergleich zur Gebläse-Regeneration um bis zu 28°C kältere Kühlluft ermöglicht eine schnelle und vollständige Kühlphase - ohne den Einsatz von Spülluft (siehe Information). Das Kühlen ohne Spülluft hat bedeutenden Einfluss auf den Energiebedarf der gesamten Regenerations-

phase und somit auf die Gesamtenergiebilanz des Adsorptionstrockners. Warmregenerierte Adsorptionstrockner mit Vakuum-Regeneration weisen daher eine bessere Gesamtenergiebilanz auf als Trockner mit Gebläse-Regeneration.

✓ Minimale Gesamtbetriebskosten

 energieeffiziente Regenerationsverfahren

DTS..V - Kühlen mit Umgebungsluft von unten nach oben

Der unvermeidbare Feuchteeintrag beim Kühlen mit Umgebungsluft erfolgt im unteren, wasserfesten Bereich der Trockenmittelschüttung am Eintritt des Trockners. Die hochgradig regenerierte, trockene Schicht im oberen Bereich der Trockenmittelschüttung am Austritt des Trockners bleibt trocken. Es entstehen keine Taupunktspitzen bei der Umschaltung und

es ist keine Spülluft erforderlich (siehe Information), um während der Kühlung am Austritt des Trockners eingetragene Feuchtigkeit wieder auszutreiben.

✓ Minimale Gesamtbetriebskosten

energieeffiziente Regenerationsverfahren

DTS..BVL – Energiesparendes, serielles Heizen und schnelles Kühlen im Saug-Betrieb (Vakuum) im geschlossenen Kreislauf ohne Spülluft

Die Baureihe DTS..BVL kombiniert die jeweiligen Vorteile aus Gebläse- und Saug-Betrieb und erzielt damit die bestmögliche Gesamtenergiebilanz. Das Heizen erfolgt im Gebläse-Betrieb mit Nutzung der Gebläse-Wärme und somit einem um bis zu 21% reduzierten Energiebedarf der nachgeschalteten elektrischen Heizung. Das Kühlen erfolgt durch schnelles Kühlen im Saug-Betrieb ohne Spülluftbedarf (siehe Information) und zusätzlich im geschlossenen Kreislauf über einen Wärmetauscher. Die Kühlphase ist damit von der Umgebungsluft und somit von klimatischen Bedingungen unabhängig. Zur weiteren Energieoptimierung können

kundenseitig vorhandene Kältequellen, z.B. Kühlwasser, Kaltwasser, etc. eingebunden werden. Durch serielles Heizen und schnelles Kühlen im geschlossenen Kreislauf weist die DTS..BVL Baureihe die bestmögliche Gesamtenergiebilanz auf und liefert stabile Taupunkte, selbst bei klimatischen Bedingungen mit hohem Feuchteanteil in der Umgebungsluft.

✓ Minimale Gesamtbetriebskosten

- energieeffiziente Regenerationsverfahren

✓ Umfangreiche Optionsmöglichkeiten

 Einbindung kundenseitiger Energiequellen

Spülluft ist eine größere Menge getrockneter, expandierter Druckluft, die am Austritt des Adsorptionstrockners entnommen wird um die Kühlphase zu beschleunigen bzw. die Kühl-Endtemperatur zu erreichen. In der Regel werden 10-20% des nominalen Volumenstroms des Trockners als Spülluft entnommen. Auf den Gesamtzyklus bezogen entspricht das einem durchschnittlichen Druckluftverbrauch von 2-3% des nominalen Volumenstromes des Trockners. Der Verbrauch der mit hohem Energieeinsatz erzeugten, trockenen Druckluft verschlechtert die Energiebilanz eines warmregenerierten Adsorptionstrockners dramatisch. Der Einsatz von Spülluft ist daher unter allen Umständen zu

Die Vorteile auf einen Blick Steuerungen

C1

Die C1 Steuerung ist eine kompakte Mikroprozessorsteuerung mit Klartextdisplay, Betriebs-/Alarmleuchte und Bedienelementen zur Steuerung von kaltregenerierten Adsorptionstrocknern. Die C1 Steuerung beherrscht serienmäßig alle Betriebsarten - fester Zyklus, variabler Zyklus (beladungsabhängige Steuerung in Verbindung mit einem Taupunktsensor) und Kompressor-Gleichlauf (Fern-Ein/Aus). Das Klartextdisplay informiert, grafisch unterstützt, über den aktuellen Betriebsstatus pro Behälter, die verbleibende Zeit bis zum nächsten Zyklusschritt und den erzielten Drucktaupunkt (Taupunktsensor erforderlich). Ein prozentualer Wartungsanzeiger sowie Wartungs- und Alarmmeldungen informieren über den Gesamtstatus des Trockners. Sämtliche Parameter des Trockners können direkt mit den Bedienelementen der C1 Steuerung über eine einfache Menüstruktur angewählt, angezeigt und bearbeitet werden. Das intelligente Servicemanagement berechnet, mit Hilfe eines Zyklenzählers, die nächste Wartung anhand der tatsächlichen Auslastung des Trockners und verlängert entsprechend die Wartungsintervalle. Die C1 Steuerung bietet serienmäßig eine Vielzahl an zusätzlichen Ein- und Ausgängen, die eine optimale Einbindung in die Steuerung des bestehenden Druckluftsystems, aber auch die Nachrüstung von Bestandsanlagen ermöglichen.

- 1 Digitaleingang für den Kompressor-Gleichlauf (Fern-Ein/Aus)
- 2 Digitaleingänge, verwendbar für die Überwachung
- eines elektronischen Kondensatableiters und / oder
- Differenzdruckmanometer der Filter
- 1 Digitaleingang für eine externe Taupunktsteuerung Analogeingang 4-20 mA für einen Taupunktsensor

- 4 Digitalausgänge für die Trocknerventile
- Digitalausgang für eine optionale zweistufige Expansion (DPS) bzw. Druckaufbauventil bei Hochdrucktrocknern (DHM, DHW)
- Analogausgang 4-20 mA für das Drucktaupunktsignal
- 1 Digitalausgang als potentialfreier Alarmkontakt
- Optionales GSM Modul für eine Alarmmeldung per SMS oder Email

C10

Die C10 Steuerung ist eine kompakte Mikroprozessorsteuerung mit 5,7" Touch-Screen. Die C10 Steuerung beherrscht serienmäßig alle Betriebsarten für warmregenerierte Adsorptionstrockner und bietet entsprechende, übersichtlich strukturierte, mehrsprachige und grafisch umgesetzte Statusanzeigen. Die Eingabemasken können direkt auf dem Touch-Screen bedient werden. Das komfortable Informationsmanagement bietet mehrere Ebenen und differenziert zwischen Betriebsmeldungen, Warnungen und Störmeldungen. Die Struktur setzt sich in separaten Meldekontakten für eine Betriebsmeldung, Sammelwarnung und Sammelstörmeldung fort. Die integrierte Trendaufzeichnung speichert sämtliche Betriebsparameter und Meldungen der jeweils letzten 2 Monate und bietet die Möglichkeit der Anzeige bzw. Auswertung direkt an der C10 Steuerung selbst oder die Übertragung der Daten auf einen USB-Stick. Die C10 Steuerung ist Upgrade-fähig und somit jederzeit auf dem aktuellen Stand der Technik. Die C10 Steuerung bietet serienmäßig eine Vielzahl an zusätzlichen Ein- und Ausgängen sowie Schnittstellen, die eine optimale Einbindung in die Steuerung des bestehenden Druckluftsystems ermöglichen.

PT01 - Druck Behälter 1 (4-20 mA)

PT02 - Druck Behälter 2 (4-20 mA)

TT01 - Temperatur Regenerationsluft Behälter-Eintritt (PT100)

TT02 - Temperatur Regenerationsluft Behälter-Austritt (PT100)

MT01 - Drucktaupunkt (4-20 mA) [Optional]

TSH01- Begrenzerthermostat Erhitzer

GS03 - Endlagenmelder Regenerationsluftklappe GS01 - Endlagenmelder Hauptventil [Optional]

- Digitalausgänge für den Betrieb des Trockners
- 3 Digitalausgänge als potentialfreie Kontakte
- (Betriebsmeldung, Sammelwarnung, Sammelstörung)
- 2 Analogausgänge 4-20 mA (Drucktaupunkt, Betriebsdruck)
- 1 USB Schnittstelle (Download der Trend-Aufzeichnungen)
- 1 SD Speicherkartenslot (Firmware-Upgrade) 1 Ethernet Schnittstelle (Fernüberwachung/Fernsteuerung) mit
- Remote Client zur Visualisierung/Bedienung von einem PC aus
- Optionale Schnittstellen: Profibus, Modbus, CANbus

Serie DPS 1-8 (A)

Regenerationsart: kaltregeneriert

Drucktaupunkte: -25°C / -40°C / -70°C

Volumenstrom: 8 m³/h bis 82 m³/h

Anschluss: G 3/8 bis G 1/2

Ihre Vorteile:

✓ Lose Trockenmittel-Schüttung

- maximale Trockenmittelmenge
- einfacher, umweltfreundlicher und preisgünstiger Service

√ Trockenmittel Molekularsieb

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -70°C
- energiesparende Zykluszeiten von 10 Minuten

√ Trockenmittel Mischbett-Schüttung

- leistungsstabile Trocknung
- verlängerte Lebensdauer des Trockenmittels

✓ Gleichmäßig verteilte Strömung durch Edelstahl-Drahtgewebe

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

✓ Einzelventilansteuerung

- druckschlag-freie Umschaltung
- gesicherte Druckluftversorgung

√ Vollintegrierte, kompakte Ventilblöcke

- leckage-frei
- einfacher, kostengünstiger Service

√ C1 Steuerung

- Klartextdisplay
- vorbereitet für eine beladungsabhängige Steuerung mit variablem Zyklus
- individuell wählbares Alarmmanagement
- ... und viele weitere Merkmale

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- ✓ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Drucklufttrocknung im kleinen Maßstab – mit der Technik und den Merkmalen eines Großtrockners

Adsorptionstrockner der Serie DPS 1-8, wahlweise als DPS 1-8 A mit zusätzlicher Aktivkohlestufe, trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -70°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Adsorptionstrockner der Serie DPS 1-8 bestehen aus einem bis 16 bar druckbeständigen, pulverbeschichteten Aluminiumprofilkörper. Hieran angeschlossen sind die vollintegrierten, leckage-freien Ventilplatten mit großen Strömungsquerschnitten und somit niedrigem Differenzdruck. Die Schaltventile sind frei zugänglich in der unteren Ventilplatte angeordnet und werden einzeln, überschneidungsfrei angesteuert. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 20% wasser-

festem Silikagel WS und 80% hochgradigtrocknendem Molekularsieb.

Adsorptionstrockner der Serie DPS 1-8 sind serienmäßig ausgestattet mit Manometern und einem Vor- und Nachfilter, die variabel montierbar sind. Mit handelsüblichen Wandkonsolen ist eine Wandmontage einfach und problemlos möglich. Die ebenfalls serienmäßige C1 Steuerung mit Klartextdisplay und integrierten Bedienelementen beherrscht alle Betriebsarten von kaltregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert

Verfügbares Zubehör

Taupunktsensor	Differenzdruckmanometer mit Alarmkontakt (DPS 6-8)	Anfahrvorrichtung (Mindestdruckventil)	GSM Modul	Umschaltsteuerung
	13 2.33 2.33 2.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1		ACTIONAL ACTION	

Viele weitere Optionen, z.B. eine Frostschutzbeheizung oder pneumatische Steuerung, stehen zur Verfügung und sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DPS 1	8 m³/h	4 - 16 bar	G 3/8		450 mm	312 mm	185 mm	11 kg
DPS 2	15 m³/h	4 - 16 bar	G 3/8		625 mm	312 mm	185 mm	15 kg
DPS 3	25 m³/h	4 - 16 bar	G 3/8	230 V / 50-60 Hz	875 mm	312 mm	185 mm	20 kg
DPS 4	35 m³/h	4 - 16 bar	G 3/8	115 V / 50-60 Hz	1125 mm	312 mm	185 mm	25 kg
DPS 6	57 m³/h	4 - 16 bar	G 1/2	24 V DC	1180 mm	484 mm	220 mm	45 kg
DPS 7	72 m³/h	4 - 16 bar	G 1/2		1405 mm	484 mm	220 mm	54 kg
DPS 8	82 m³/h	4 - 16 bar	G 1/2		1605 mm	484 mm	220 mm	62 kg
DPS 1 A	8 m³/h	4 - 16 bar	G 3/8		450 mm	412 mm	185 mm	14 kg
DPS 2 A	15 m³/h	4 - 16 bar	G 3/8		625 mm	412 mm	185 mm	20 kg
DPS 3 A	25 m³/h	4 - 16 bar	G 3/8	230 V / 50-60 Hz	875 mm	412 mm	185 mm	27 kg
DPS 4 A	35 m³/h	4 - 16 bar	G 3/8	115 V / 50-60 Hz	1125 mm	412 mm	185 mm	35 kg
DPS 6 A	57 m³/h	4 - 16 bar	G 1/2	24 V DC	1180 mm	614 mm	220 mm	65 kg
DPS 7 A	72 m³/h	4 - 16 bar	G 1/2		1405 mm	614 mm	220 mm	78 kg
DPS 8 A	82 m³/h	4 - 16 bar	G 1/2		1605 mm	614 mm	220 mm	90 kg

^{*}¹ – normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Filtrations-Separations-Technik

Serie DPS 10-100 (A)

Regenerationsart: kaltregeneriert

Drucktaupunkte: -25°C / -40°C / -70°C

Volumenstrom: 110 m³/h bis 1.000 m³/h

Anschluss: G 1 bis G 2

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Sicherheitsstandards
- hochwertige, langlebige Beschichtung

√ Trockenmittel Molekularsieb

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -70°C
- energiesparende Zykluszeiten von 10 Minuten

√ Trockenmittel Mischbett-Schüttung

- leistungsstabile Trocknung
- verlängerte Lebensdauer des Trockenmittels

✓ Gleichmäßig verteilte Strömung durch Edelstahl-Siebboden

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

✓ Einzelventilansteuerung

- druckschlag-freie Umschaltung
- gesicherte Druckluftversorgung

√ Kompakte Ventilblöcke

- praktisch leckage-frei
- einfacher, kostengünstiger Service

√ C1 Steuerung

- Klartextdisplay
- vorbereitet für eine beladungsabhängige Steuerung mit variablem Zyklus
- individuell wählbares Alarmmanagement
- ... und viele weitere Merkmale

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- √ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Leistungsfähige und wirtschaftliche Drucklufttrocknung – das Ergebnis aus vielen Merkmalen der DPS Serie

Adsorptionstrockner der Serie DPS 10-100, wahlweise als DPS 10-100 A mit zusätzlicher Aktivkohlestufe, trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -70°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Adsorptionstrockner der Serie DPS 10-100 bestehen aus bis 16 bar druckbeständigen, geschweißten und lackierten Stahlbehältern und praktisch leckage-freien Ventilblöcken mit großen Strömungsquerschnitten und somit niedrigem Differenzdruck. Die Ventile werden einzeln, zeitlich versetzt und somit überschneidungsfrei angesteuert. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 20% wasser-

festem Silikagel WS und 80% hochgradigtrocknendem Molekularsieb.

Adsorptionstrockner der Serie DPS 10-100 sind serienmäßig ausgestattet mit Manometern und einem Vor- und Nachfilter mit Differenzdruckmanometer. Die ebenfalls serienmäßige C1 Steuerung mit Klartextdisplay und integrierten Bedienelementen beherrscht alle Betriebsarten von kaltregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert

Verfügbares Zubehör

O				
Taupunktsensor	Differenzdruckmanometer mit Alarmkontakt	Anfahrvorrichtung (Mindestdruckventil)	GSM Modul	Umschaltsteuerung
1 E S 1	13 1.29 10 10 10 10 10 10 10 10 10 10 10 10 10 1		Services of the services of th	

Viele weitere Optionen, z.B. Frostschutzbeheizung, pneumatische Steuerung, Spezialanstriche, erweiterte Schallreduzierung, Schnellschlussventile, etc. stehen zur Verfügung und sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DPS 10	110 m³/h	4 - 16 bar	G 1		1460 mm	675 mm	515 mm	126 kg
DPS 15	150 m³/h	4 - 16 bar	G 1		1700 mm	675 mm	515 mm	142 kg
DPS 20	200 m³/h	4 - 16 bar	G 1		1710 mm	675 mm	515 mm	180 kg
DPS 25	260 m³/h	4 - 16 bar	G 1	230 V / 50-60 Hz	1735 mm	675 mm	515 mm	220 kg
DPS 30	320 m³/h	4 - 16 bar	G 1 ½	115 V / 50-60 Hz	1825 mm	745 mm	520 mm	255 kg
DPS 40	410 m³/h	4 - 16 bar	G 1 ½	24 V DC	1840 mm	755 mm	525 mm	275 kg
DPS 60	590 m³/h	4 - 16 bar	G 1 ½		1870 mm	775 mm	575 mm	355 kg
DPS 80	770 m³/h	4 - 16 bar	G 2		2045 mm	1050 mm	695 mm	470 kg
DPS 100	1.000 m³/h	4 - 16 bar	G 2		2060 mm	1050 mm	730 mm	560 kg
DPS 10 A	110 m³/h	4 - 16 bar	G 1		1460 mm	955 mm	515 mm	173 kg
DPS 15 A	150 m³/h	4 - 16 bar	G 1		1700 mm	955 mm	515 mm	195 kg
DPS 20 A	200 m³/h	4 - 16 bar	G 1		1710 mm	955 mm	515 mm	250 kg
DPS 25 A	260 m³/h	4 - 16 bar	G 1	230 V / 50-60 Hz	1735 mm	955 mm	515 mm	300 kg
DPS 30 A	320 m³/h	4 - 16 bar	G 1 ½	115 V / 50-60 Hz	1825 mm	1045 mm	520 mm	350 kg
DPS 40 A	410 m³/h	4 - 16 bar	G 1 ½	24 V DC	1840 mm	1095 mm	525 mm	395 kg
DPS 60 A	590 m³/h	4 - 16 bar	G 1 ½		1870 mm	1175 mm	575 mm	525 kg
DPS 80 A	770 m³/h	4 - 16 bar	G 2		2045 mm	1470 mm	695 mm	630 kg
DPS 100 A	1.000 m³/h	4 - 16 bar	G 2		2060 mm	1520 mm	730 mm	740 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Serie DPS 120-630

Regenerationsart: kaltregeneriert

Drucktaupunkte: -25°C / -40°C / -70°C

Volumenstrom: 1.200 m³/h bis 6.290 m³/h

Anschluss: DN 50 bis DN 125

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Sicherheitsstandards
- hochwertige, langlebige Beschichtung

√ Trockenmittel Molekularsieb

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -70°C
- energiesparende Zykluszeiten von 10 Minuten

√ Trockenmittel Mischbett-Schüttung

- leistungsstabile Trocknung
- verlängerte Lebensdauer des Trockenmittels

√ Gleichmäßig verteilte Strömung durch Edelstahl-Spaltsiebboden

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

√ Einzelventilansteuerung

- druckschlag-freie Umschaltung
- gesicherte Druckluftversorgung

√ 3/2-Wege Kugelhahn mit vollem Durchgang und Stellungsanzeige

- niedrige Differenzdrücke
- frei zugänglich und somit einfacher Service

√ C1 Steuerung

- Klartextdisplay
- vorbereitet für eine beladungsabhängige Steuerung mit variablem Zyklus
- individuell wählbares Alarmmanagement
- ... und viele weitere Merkmale

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- √ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Drucklufttrocknung im großen Maßstab – bei höchster Wirtschaftlichkeit und Betriebssicherheit

Adsorptionstrockner der Serie DPS 120-630 trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -70°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann. Eine zusätzliche Aktivkohlestufe kann über einen nachgeschalteten, separaten Öldampf-Aktivkohle-Adsorber realisiert werden (siehe Serie DSS).

Adsorptionstrockner der Serie DPS 120-630 bestehen aus bis 11 bar druckbeständigen, geschweißten und lackierten Stahlbehältern und großzügig dimensionierten, verzinkten Rohrleitungen sowie klassischen Einzelventilen für niedrige Differenzdrücke in diesem Leistungsbereich. Zum Einsatz kommen ein pneumatisch gesteuerter 3/2-Wege Kugelhahn mit vollem Durchgang sowie pneumatisch gesteuerte Schrägsitzventile von namhaften Herstellern. Die Ventile werden einzeln, zeitlich versetzt und somit überschnei-

dungsfrei angesteuert. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 20% wasserfestem Silikagel WS und 80% hochgradig-trocknendem Molekularsieb. Ebenfalls großzügig dimensionierte Schalldämpfer sorgen für eine reduzierte Geräuschentwicklung, optional auf Werte bis zu 75 dB(A).

Adsorptionstrockner der Serie DPS 120-630 sind serienmäßig mit Manometern ausgestattet. Vor- und Nachfilter sind optional erhältlich. Die serienmäßige C1 Steuerung mit Klartextdisplay und integrierten Bedienelementen beherrscht alle Betriebsarten von kaltregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert werden.

Verfügbares Zubehör

•			
Taupunktsensor	Anfahrvorrichtung (Mindestdruckventil)	GSM Modul	Umschaltsteuerung
		© 100 mm m	

Viele weitere Optionen, z.B. Frostschutzbeheizung, pneumatische Steuerung, Spezialanstriche, erweiterte Schallreduzierung, etc. stehen zur Verfügung und sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DPS 120	1.200 m³/h	4 - 11 bar	DN 50		2020 mm	1370 mm	570 mm	650 kg
DPS 150	1.480 m³/h	4 - 11 bar	DN 65		2070 mm	1470 mm	650 mm	840 kg
DPS 210	2.080 m³/h	4 - 11 bar	DN 65	230 V / 50-60 Hz	2100 mm	1620 mm	745 mm	960 kg
DPS 240	2.430 m³/h	4 - 11 bar	DN 80	230 1 7 30 00 112	2200 mm	1750 mm	800 mm	1080 kg
DPS 290	2.930 m³/h	4 - 11 bar	DN 80	115 V / 50-60 Hz	2200 mm	1900 mm	855 mm	1520 kg
DPS 370	3.700 m³/h	4 - 11 bar	DN 100	24 V DC	2340 mm	2070 mm	950 mm	2000 kg
DPS 510	5.080 m³/h	4 - 11 bar	DN 100		2600 mm	2220 mm	1030 mm	2450 kg
DPS 630	6.290 m³/h	4 - 11 bar	DN 125		2820 mm	2420 mm	1100 mm	2900 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Filtrations-Separations-Technic

Serie DSS 1-630 A

Regenerationsart: ---

Restölgehalt: $\leq 0,003 \text{ mg/m}^3$ Volumenstrom: $8 \text{ m}^3\text{/h} \text{ bis } 6.290 \text{ m}^3\text{/h}$ Anschluss: 6 3/8 bis DN 125

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Sicherheitsstandards
- hochwertige, langlebige Beschichtung

✓ Aktivkohle-Pellets

 hochwertige, gepresste und staubarme Aktivkohle-Pellets

✓ Lose Schüttung

- maximale Aktivkohlemenge
- einfacher, umweltfreundlicher Service

✓ Edelstahl-Strömungsverteiler am Eintritt und Austritt

- gleichmäßig verteilte Strömung
- reduzierte Staubbildung

✓ Staubarme Strömung am Austritt über Edelstahl-Drahtgewebe bzw. Edelstahl-Siebboden

- reduzierte Staubbildung
- einfacher Service

√ Ölprüfindikator

- Kontrollmöglichkeit des Sättigungsgrades der Aktivkohle
- Prüfpunkt berücksichtigt Standzeitreserve

√ Behältermanometer (DSS 10-630)

- optische Anzeige der Betriebssituation
- Sicherstellung des drucklosen Zustands vor Wartungsarbeiten

.. ergeben einen Adsorber mit ..

- √ maximaler Betriebssicherheit
- √ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Öldampfadsorption – gezielte Ausschaltung der zweitgrößten Dampfphase in der Druckluft

Öldampf-Aktivkohle-Adsorber der Serie DSS reduzieren den Öldampfgehalt in der Druckluft auf geringe Restwerte. Öldampf ist die zweitgrößte Dampfphase in der Druckluft und hat neben Feuchtigkeit ein hohes Potential zur Kondensation – im Fall von Öldampf, die Kondensation zu flüssigem Öl. Durch die hochgradige Entfernung des Öldampfes durch einen Öldampf-Aktivkohle-Adsorber werden Kondensationsprozesse bei einer Abkühlung der Druckluft und somit die Bildung von flüssigem Öl in der Druckluft zuverlässig verhindert. Ferner entfernen Öldampf-Aktivkohle-Adsorber eine Vielzahl weiterer Kohlenwasserstoffe, Geruchs- und Geschmacksstoffe.

Öldampf-Aktivkohle-Adsorber der Serie DSS 1-8 bestehen aus einem bis 16 bar druckbeständigen, pulverbeschichteten Aluminiumprofilkörper, auf den zwei Endplatten aufgesetzt werden. Öldampf-Aktivkohle-Adsorber der Serie DSS 10-100 bzw. DSS 120-630 bestehen aus bis 16 bar bzw. 11 bar druckbeständigen, geschweißten und lackierten Stahlbehältern. Der Betrieb erfolgt mit einer Aktivkohle-Schüttung, bestehend aus 100% reiner Aktivkohle. Strömungsverteiler bzw. Edelstahl-Drahtgewebe am Eintritt und ein Edelstahl-Siebboden bzw. Edelstahl-Drahtgewebe am Ausritt sorgen für eine gleichmäßige Durchströmung und reduzierten Abrieb aus der Aktivkohle.

Öldampf-Aktivkohle-Adsorber der Serie DSS sind serienmäßig mit einem Ölprüfindikator ausgestattet, die Baugrößen DSS 10-630 verfügen zusätzlich über ein Behältermanometer. Der Messpunkt des Ölprüfindikators liegt ca. 15% vor dem Ende der Aktivkohleschüttung, so dass eine ausreichende Standzeitreserve bis zum Aktivkohlewechsel besteht.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Max. zul. Betriebs- überdruck	Druckluft Anschluss	Höhe	Breite	Tiefe	Gewicht
DSS 1 A	8 m³/h	16 bar	G 3/8	392 mm	158 mm	180 mm	3 kg
DSS 2 A	15 m³/h	16 bar	G 3/8	567 mm	158 mm	180 mm	5 kg
DSS 3 A	25 m³/h	16 bar	G 3/8	817 mm	158 mm	180 mm	7,5 kg
DSS 4 A	35 m³/h	16 bar	G 3/8	1067 mm	158 mm	180 mm	10 kg
DSS 6 A	57 m³/h	16 bar	G 1/2	1107 mm	208 mm	215 mm	20 kg
DSS 7 A	72 m³/h	16 bar	G 1/2	1332 mm	208 mm	215 mm	24 kg
DSS 8 A	82 m³/h	16 bar	G 1/2	1532 mm	208 mm	215 mm	28 kg
DSS 10 A	110 m³/h	16 bar	G 1	1460 mm	265 mm	350 mm	45 kg
DSS 15 A	150 m³/h	16 bar	G 1	1700 mm	265 mm	350 mm	52 kg
DSS 20 A	200 m³/h	16 bar	G 1	1710 mm	290 mm	350 mm	67 kg
DSS 25 A	260 m³/h	16 bar	G 1	1720 mm	320 mm	350 mm	80 kg
DSS 30 A	320 m³/h	16 bar	G 1 ½	1760 mm	345 mm	350 mm	95 kg
DSS 40 A	410 m³/h	16 bar	G 1 ½	1820 mm	375 mm	350 mm	107 kg
DSS 60 A	590 m³/h	16 bar	G 1 ½	1850 mm	425 mm	350 mm	143 kg
DSS 80 A	770 m³/h	16 bar	G 2	1980 mm	460 mm	400 mm	190 kg
DSS 100 A	1.000 m³/h	16 bar	G 2	2000 mm	515 mm	400 mm	230 kg
DSS 120 A	1.200 m³/h	11 bar	DN 50	2020 mm	450 mm	570 mm	260 kg
DSS 150 A	1.480 m³/h	11 bar	DN 65	2070 mm	500 mm	650 mm	325 kg
DSS 210 A	2.080 m³/h	11 bar	DN 65	2100 mm	600 mm	745 mm	410 kg
DSS 240 A	2.430 m³/h	11 bar	DN 80	2200 mm	650 mm	800 mm	495 kg
DSS 290 A	2.930 m³/h	11 bar	DN 80	2200 mm	700 mm	855 mm	570 kg
DSS 370 A	3.700 m³/h	11 bar	DN 100	2340 mm	800 mm	950 mm	715 kg
DSS 510 A	5.080 m³/h	11 bar	DN 100	2600 mm	850 mm	1030 mm	940 kg
DSS 630 A	6.290 m³/h	11 bar	DN 125	2820 mm	950 mm	1100 mm	1200 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingung 7 bar Betriebsüberdruck

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Serie DTS 45-1470 V

Regenerationsart: warmregeneriert

Drucktaupunkte: -25°C / -40°C / -70°C

Volumenstrom: 410 m³/h bis 14.700 m³/h

Anschluss: DN 40 bis DN 200

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Auslegungs- und Sicherheitsstandards
- hochwertige, langlebige Beschichtung
- vollverzinkte Rohrleitungen

√ Trockenmittel Silikagel mit Mischbett-Schüttung

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -70°C
- niedrige Regenerationstemperaturen mit Energieeinsparungen von bis zu 33%
- verlängerte Lebensdauer des Trockenmittels

✓ Gleichmäßige Strömung durch Edelstahl-Spaltsiebboden

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

✓ Mechanisch gekoppelte 4/2-Wege Ventile (DTS 45 V bis DTS 1100 V)

- überschneidungsfreies, sicheres Umschalten
- gesicherte Druckluftversorgung nach dem Trockner

✓ Externe Heizung

- kein Differenzdruck im Adsorptionsbetrieb
- frei zugänglich und somit einfacher Service
- einfache Einbindung anderer Wärmequellen

√ Schnelles Kühlen im Saug-Betrieb

- Vermeidung von Gebläse-Wärme
- keine Spülluft erforderlich

√ Kühlen von unten nach oben

- Feuchteeintrag aus der Umgebungsluft nur im unteren, wasserfesten Bereich am Eintritt des Trockners
- keine Spülluft erforderlich

✓ C10 Steuerung

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- √ langer Lebensdauer
- √ hoher Servicefreundlichkeit
- √ umfangreichen Optionsmöglichkeiten

Warmregeneration mit schnellem Kühlen ohne Spülluft – Wirtschaftliche Drucklufttrocknung im mittleren bis hohen Leistungsbereich

Adsorptionstrockner der Serie DTS..V trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -70°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann. Eine zusätzliche Aktivkohlestufe kann über einen nachgeschalteten, separaten Öldampf-Aktivkohle-Adsorber realisiert werden (siehe Serie DSS).

Adsorptionstrockner der Serie DTS..V bestehen aus bis 11 bar druckbeständigen, geschweißten und lackierten Stahlbehältern und großzügig dimensionierten, verzinkten Rohrleitungen. Die Strömungswege werden umgeschaltet über pneumatisch gesteuerte

4/2-Wege Kükenhähne, die über eine Gelenkwelle mechanisch miteinander verbunden sind und somit synchron schalten. Ab Baugröße DTS 1280 kommen Absperrklappen mit Endlagenüberwachung zum Einsatz. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 30% wasserfestem Silikagel WS und 70% hochgradig-trocknendem Silikagel N. Die Regeneration erfolgt mit Umgebungsluft, die von einer Vakuumpumpe angesaugt, in einem Elektroerhitzer erwärmt und durch das Trockenmittel geleitet wird (Heizen). Die Kühlung erfolgt auf gleiche Weise bei abgeschaltetem Elektroerhitzer – ohne den Bedarf an Spülluft.

Adsorptionstrockner der Serie DTS..V verfügen über eine umfangreiche Serienaus-

stattung. Vor- und Nachfilter sind optional erhältlich. Die serienmäßige C10 Steuerung mit 5,7" Touch-Screen beherrscht alle Betriebsarten von warmregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert werden.

Optional können weitere Energieeinsparungen durch die Einbindung kundenseitig vorhandener Wärmequellen (z.B. Dampf oder Warmwasser) und/oder eine thermische Isolierung realisiert werden.

Verfügbares Zubehör

Taupunktsensor Thermische Isolierung Anfahrvorrichtung (Mindestdruckventil) Endlagenmelder Hauptarmatur Umschaltsteuerung

Viele weitere Optionen, z.B. Sonderspannungen, Sondersteuerungen, Spezialanstriche, etc. stehen zur Verfügung und sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DTS 45 V	410 m³/h	4 - 11 bar	DN 40		2225 mm	1190 mm	1000 mm	465 kg
DTS 55 V	500 m³/h	4 - 11 bar	DN 40		2225 mm	1190 mm	1000 mm	560 kg
DTS 65 V	645 m³/h	4 - 11 bar	DN 50]	2325 mm	1310 mm	1085 mm	640 kg
DTS 85 V	790 m³/h	4 - 11 bar	DN 50		2325 mm	1310 mm	1085 mm	780 kg
DTS 125 V	1.210 m³/h	4 - 11 bar	DN 80		2705 mm	1460 mm	1150 mm	1020 kg
DTS 155 V	1.490 m³/h	4 - 11 bar	DN 80		2720 mm	1510 mm	1230 mm	1320 kg
DTS 215 V	2.100 m³/h	4 - 11 bar	DN 80		2770 mm	1600 mm	1460 mm	1690 kg
DTS 250 V	2.440 m³/h	4 - 11 bar	DN 100		2885 mm	2015 mm	1475 mm	1900 kg
DTS 300 V	2.950 m³/h	4 - 11 bar	DN 100	400 V / 50 Hz	2920 mm	2045 mm	1505 mm	2400 kg
DTS 380 V	3.750 m³/h	4 - 11 bar	DN 100	400 7 30 112	2970 mm	2160 mm	1590 mm	2800 kg
DTS 430 V	4.250 m³/h	4 - 11 bar	DN 150	500 V / 50 Hz	3210 mm	2370 mm	1560 mm	3800 kg
DTS 500 V	4.930 m³/h	4 - 11 bar	DN 150	690 V / 60 Hz	3235 mm	2475 mm	1745 mm	4050 kg
DTS 540 V	5.330 m³/h	4 - 11 bar	DN 150		3250 mm	2520 mm	1870 mm	4220 kg
DTS 650 V	6.510 m³/h	4 - 11 bar	DN 150		3520 mm	2520 mm	1920 mm	5000 kg
DTS 720 V	7.180 m³/h	4 - 11 bar	DN 150		3560 mm	2640 mm	1985 mm	5650 kg
DTS 860 V	8.600 m³/h	4 - 11 bar	DN 200		3585 mm	4400 mm	1995 mm	6380 kg
DTS 940 V	9.400 m³/h	4 - 11 bar	DN 200		3605 mm	4500 mm	1995 mm	7520 kg
DTS 1110 V	11.000 m³/h	4 - 11 bar	DN 200		3650 mm	4750 mm	1995 mm	8730 kg
DTS 1280 V	12.800 m³/h	4 - 11 bar	DN 200		4050 mm	4945 mm	2030 mm	8730 kg
DTS 1470 V	14.700 m³/h	4 - 11 bar	DN 200		4050 mm	5145 mm	2055 mm	8730 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Serie DTS 125-1470 BVL

Regenerationsart: warmregeneriert

Drucktaupunkte: -25°C / -40°C / -70°C

Volumenstrom: 1.210 m³/h bis 14.700 m³/h

Anschluss: DN 80 bis DN 200

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Auslegungs- und Sicherheitsstandards
- hochwertige, langlebige Beschichtung
- vollverzinkte Rohrleitungen

√ Trockenmittel Silikagel mit Mischbett-Schüttung

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -70°C
- niedrige Regenerationstemperaturen mit Energieeinsparungen von bis zu 33%
- verlängerte Lebensdauer des Trockenmittels

√ Gleichmäßige Strömung durch Spaltsiebboden

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

✓ Mechanisch gekoppelte 4/2-Wege Ventile (DTS 125 BVL bis DTS 1100 BVL)

- überschneidungsfreies, sicheres Umschalten
- gesicherte Druckluftversorgung nach dem Trockner

✓ Externe Heizung

- kein Differenzdruck im Adsorptionsbetrieb
- frei zugänglich und somit einfacher Service
- einfache Einbindung anderer Wärmequellen

✓ Serielles Heizen im Gebläse-Betrieb

- Nutzung der Gebläse-Wärme
- bis zu 21% Energieeinsparung

√ Schnelles Kühlen im Saug-Betrieb

- kein Eintrag von Gebläse-Wärme
- keine Spülluft erforderlich

✓ Kühlen im geschlossenen Kreislauf, wasser- oder luftgekühlt

- unabhängig von klimatischen Bedingungen
- höhere Leistung durch fehlenden Feuchteeintrag
- einfache Einbindung externer Kältequellen

√ C10 Steuerung

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- √ langer Lebensdauer
- √ hoher Servicefreundlichkeit
- ✓ umfangreichen Optionsmöglichkeiten

Warmregeneration mit seriellem Heizen und schnellem Kühlen im geschlossenen Kreislauf – wirtschaftlicher kann man Druckluft im hohen Leistungsbereich nicht trocknen

Adsorptionstrockner der Serie DTS..BVL trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -70°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann. Eine zusätzliche Aktivkohlestufe kann über einen nachgeschalteten, separaten Öldampf-Aktivkohle-Adsorber realisiert werden (siehe Serie DSS).

Adsorptionstrockner der Serie DTS..BVL bestehen aus bis 11 bar druckbeständigen, geschweißten und lackierten Stahlbehältern und großzügig dimensionierten, verzinkten Rohrleitungen. Die Strömungswege werden umgeschaltet über pneumatisch gesteuerte 4/2-Wege Kükenhähne, die über eine Ge-

lenkwelle mechanisch miteinander verbunden sind und somit synchron schalten. Ab Baugröße DTS 1280 kommen Absperrklappen mit Endlagenüberwachung zum Einsatz. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 30% wasserfestem Silikagel WS und 70% hochgradig-trocknendem Silikagel N. Die Heizphase der Regeneration erfolgt im Gebläse-Betrieb mit Nutzung der Gebläse-Wärme. Angesaugte Umgebungsluft wird durch das Gebläse vorgewärmt, in einem Elektroerhitzer nacherhitzt und durch das Trockenmittel geleitet (serielles Heizen). Die Kühlphase erfolgt im Saug-Betrieb und somit ohne Gebläse-Wärme (schnelles Kühlen) und im geschlossenen Kreislauf über einen Wärmetauscher. Die Kühlung erfolgt ohne Eintrag von Umgebungsluft und somit unabhängig von klimatischen Bedingungen - und selbstverständlich ohne Spülluft.

Adsorptionstrockner der Serie DTS..BVL verfügen über eine umfangreiche Serienausstattung. Vor- und Nachfilter sind optional erhältlich. Die serienmäßige C10 Steuerung mit 5,7" Touch-Screen beherrscht alle Betriebsarten von warmregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert werden.

Optional können weitere Energieeinsparungen durch die Einbindung kundenseitig vorhandener Wärmequellen (z.B. Dampf oder Warmwasser) und/oder eine thermische Isolierung realisiert werden.

Verfügbares Zubehör

Taupunktsensor Thermische Isolierung Anfahrvorrichtung (Mindestdruckventil) Endlagenmelder Hauptarmatur Umschaltsteuerung

Viele weitere Optionen, z.B. Sonderspannungen, Sondersteuerungen, Spezialanstriche, etc. stehen zur Verfügung und sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht		
DTS 125 BVL	1.210 m³/h	4 - 11 bar	DN 80							
DTS 155 BVL	1.490 m³/h	4 - 11 bar	DN 80							
DTS 215 BVL	2.100 m³/h	4 - 11 bar	DN 80							
DTS 250 BVL	2.440 m³/h	4 - 11 bar	DN 100							
DTS 300 BVL	2.950 m³/h	4 - 11 bar	DN 100							
DTS 380 BVL	3.750 m³/h	4 - 11 bar	DN 100							
DTS 430 BVL	4.250 m³/h	4 - 11 bar	DN 150	400 V / 50 Hz						
DTS 500 BVL	4.930 m³/h	4 - 11 bar	DN 150	400 V / 30 112		Auf Antropo				
DTS 540 BVL	5.330 m³/h	4 - 11 bar	DN 150	500 V / 50 Hz	Auf Anfrage					
DTS 650 BVL	6.510 m³/h	4 - 11 bar	DN 150	690 V / 60 Hz						
DTS 720 BVL	7.180 m³/h	4 - 11 bar	DN 150							
DTS 860 BVL	8.600 m³/h	4 - 11 bar	DN 200							
DTS 940 BVL	9.400 m³/h	4 - 11 bar	DN 200							
DTS 1110 BVL	11.000 m³/h	4 - 11 bar	DN 200							
DTS 1280 BVL	12.800 m³/h	4 - 11 bar	DN 200							
DTS 1470 BVL	14.700 m³/h	4 - 11 bar	DN 200							

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Filtrations-Separations-Technik

Serie DHM

Regenerationsart: kaltregeneriert

Drucktaupunkte: -25°C / -40°C / -55°C

Volumenstrom: 130 m³/h bis 1.600 m³/h

Anschluss: G 1/2 bis G 3/4

Ihre Vorteile:

✓ Edelstahl-Behälterrohre MADE IN GERMANY

- erfüllen höchste Sicherheitsstandards
- höchste Korrosionsbeständigkeit

√ Trockenmittel Molekularsieb

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -55°C
- energiesparende Zykluszeiten von 20 Minuten

√ Trockenmittel Mischbett-Schüttung

- leistungsstabile Trocknung
- verlängerte Lebensdauer des Trockenmittels

✓ Gleichmäßig verteilte Strömung durch Edelstahl-Siebbleche

- maximale Trocknungseffizienz
- niedrige Differenzdrücke
- verlängerte Lebensdauer des Trockenmittels

✓ Einzelventilansteuerung

- druckschlag-freie Umschaltung
- gesicherte Druckluftversorgung

√ Vollintegrierte, kompakte Ventilblöcke

- leckage-frei
- einzigartig kompakte Bauform
- einfacher, kostengünstiger Service

√ C1 Steuerung

- Klartextdisplay
- vorbereitet für eine beladungsabhängige Steuerung mit variablem Zyklus
- individuell wählbares Alarmmanagement
- ... und viele weitere Merkmale

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- ✓ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Drucklufttrocknung im Hochdruckbereich – die kompakte DHM Baureihe

Adsorptionstrockner der Serie DHM, wahlweise als DHM..A mit zusätzlicher Aktivkohlestufe, trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -55°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Adsorptionstrockner der Serie DHM bestehen aus bis zu 350 bar druckbeständigen Edelstahl-Behälterrohren, auf die die vollintegrierten, leckage-freien Ventilblöcke aufgesetzt werden. Die Schaltventile sind frei zugänglich im unteren Ventilblock angeordnet und werden einzeln und überschneidungsfrei angesteuert. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüt-

tung, bestehend aus 20% wasserfestem Silikagel WS und 80% hochgradig-trocknendem Molekularsieb.

Adsorptionstrockner der Serie DHM sind serienmäßig ausgestattet mit Manometern und einem Vor- und Nachfilter. Die ebenfalls serienmäßige C1 Steuerung mit Klartext-display und integrierten Bedienelementen beherrscht alle Betriebsarten von kaltregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert werden.

Verfügbares Zubehör

Taupunktsensor	Differenzdruckmanometer mit Alarmkontakt	Anfahrvorrichtung (Mindestdruckventil)	GSM Modul	Umschaltsteuerung
			STATE OF CE	

Viele weitere Optionen sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewicht
DHM 8/100	130 m³/h	30 - 100 bar	G 1/2	Aliscilluss	1040 mm	782 mm	370 mm	85 kg
DHM 13/100	195 m³/h	30 - 100 bar	G 1/2		1190 mm	782 mm	370 mm	96 kg
DHM 18/100	270 m³/h	30 - 100 bar	G 1/2	230 V / 50-60 Hz 115 V / 50-60 Hz 24 V DC	1340 mm	782 mm	370 mm	109 kg
DHM 26/100	345 m³/h	30 - 100 bar	G 1/2		1490 mm	782 mm	370 mm	122 kg
DHM 31/100	425 m³/h	30 - 100 bar	G 1/2		1740 mm	782 mm	370 mm	134 kg
DHM 41/100	565 m³/h	30 - 100 bar	G 3/4		1700 mm	850 mm	370 mm	157 kg
DHM 52/100	670 m³/h	30 - 100 bar	G 3/4	24 V DC	1900 mm	850 mm	370 mm	172 kg
DHM 59/100	760 m³/h	30 - 100 bar	G 3/4		2100 mm	850 mm	370 mm	193 kg
DHM 66/100	825 m³/h	30 - 100 bar	G 3/4		2350 mm	850 mm	370 mm	218 kg
DHM 8/350	225 m³/h	30 - 350 bar	G 1/2		1040 mm	782 mm	370 mm	130 kg
DHM 13/350	350 m³/h	30 - 350 bar	G 1/2		1190 mm	782 mm	370 mm	151 kg
DHM 18/350	480 m³/h	30 - 350 bar	G 1/2		1340 mm	782 mm	370 mm	177 kg
DHM 26/350	620 m³/h	30 - 350 bar	G 1/2	230 V / 50-60 Hz	1490 mm	782 mm	370 mm	209 kg
DHM 31/350	750 m³/h	30 - 350 bar	G 1/2	115 V / 50-60 Hz	1740 mm	782 mm	370 mm	237 kg
DHM 41/350	1.100 m³/h	30 - 350 bar	G 3/4	24 V DC	1700 mm	850 mm	370 mm	284 kg
DHM 52/350	1.300 m³/h	30 - 350 bar	G 3/4		1900 mm	850 mm	370 mm	314 kg
DHM 59/350	1.475 m³/h	30 - 350 bar	G 3/4		2100 mm	850 mm	370 mm	356 kg
DHM 66/350	1.600 m³/h	30 - 350 bar	G 3/4		2350 mm	850 mm	370 mm	397 kg

^{*}¹ – normiert auf 1 bar(a) und 20°C für Betriebsbedingungen max. zulässiger Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Filtrations-Separations-Techni

Serie DHW

Regenerationsart: kaltregeneriert

Drucktaupunkte: -25°C / -40°C / -55°C

Volumenstrom: 45 m³/h bis 1.560 m³/h

Anschluss: G 1/2 bis G 3/4

Ihre Vorteile:

✓ Druckbehälter MADE IN GERMANY

- erfüllen höchste Sicherheitsstandards
- hochwertige, langlebige Beschichtung

√ Trockenmittel Molekularsieb

- hochwertiges, leistungsfähiges Trockenmittel
- stabile Drucktaupunkte von bis zu -55°C
- energiesparende Zykluszeiten von 20 Minuten

√ Trockenmittel Mischbett-Schüttung

- leistungsstabile Trocknung
- verlängerte Lebensdauer des Trockenmittels

√ Einzelventilansteuerung

- druckschlag-freie Umschaltung
- gesicherte Druckluftversorgung

√ C1 Steuerung

- Klartextdisplay
- vorbereitet für eine beladungsabhängige
 Steuerung mit variablem Zyklus
- individuell wählbares Alarmmanagement
- ... und viele weitere Merkmale

.. ergeben einen Trockner mit ..

- √ maximaler Betriebssicherheit
- √ minimalen Gesamtbetriebskosten
- ✓ langer Lebensdauer
- √ hoher Servicefreundlichkeit

Drucklufttrocknung im Hochdruckbereich – die individuell konfigurierbare DHW Baureihe

Adsorptionstrockner der Serie DHW, wahlweise als DHW..A mit zusätzlicher Aktivkohlestufe, trocknen die Druckluft auf Drucktaupunkte von wahlweise -25°C, -40°C oder bis zu -55°C. Sie erzeugen damit trockene, hochgradig untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Adsorptionstrockner der Serie DHW bestehen aus bis zu 350 bar druckbeständigen,

geschweißten und lackierten Stahlbehältern. Die Schaltventile sind frei zugänglich und werden einzeln und überschneidungsfrei angesteuert. Der Betrieb erfolgt mit einer Trockenmittel-Mischbett-Schüttung, bestehend aus 20% wasserfestem Silikagel WS und 80% hochgradig-trocknendem Molekularsieb.

Adsorptionstrockner der Serie DHW sind serienmäßig ausgestattet mit Manometern und einem Vor- und Nachfilter. Die ebenfalls serienmäßige C1 Steuerung mit Klartext-display und integrierten Bedienelementen

beherrscht alle Betriebsarten von kaltregenerierten Adsorptionstrocknern und gestattet sowohl den unabhängigen Einzelbetrieb des Trockners als auch die Einbindung in die Steuerung des bestehenden Druckluftsystems. In Verbindung mit einem optionalen Taupunktsensor können die Adsorptionstrockner beladungsabhängig im variablen Zyklus betrieben und somit Energieeinsparungen von in der Regel 20-70% realisiert werden.

Verfügbares Zubehör

Taupunktsensor	mit Alarmkontakt	(Mindestdruckventil)	GSM Modul	Umschaltsteuerung
			GO TO THE STATE OF	

Viele weitere Optionen sind auf Anfrage erhältlich.

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Min./Max. zul. Betriebsüberdruck	Druckluft Anschluss	Elektrischer Anschluss	Höhe	Breite	Tiefe	Gewich
DHW 11/50	45 m³/h	17 - 50 bar	G 1/2		1155 mm	735 mm	465 mm	65 kg
DHW 19/50	91 m³/h	17 - 50 bar	G 1/2		1425 mm	735 mm	465 mm	80 kg
DHW 39/50	200 m³/h	17 - 50 bar	G 1/2	230 V / 50-60 Hz	1525 mm	810 mm	480 mm	105 kg
DHW 49/50	244 m³/h	17 - 50 bar	G 1/2	230 V / 30 00 112	1715 mm	810 mm	480 mm	115 kg
DHW 72/50	357 m³/h	17 - 50 bar	G 3/4	115 V / 50-60 Hz	1780 mm	930 mm	500 mm	150 k
DHW 96/50	475 m³/h	17 - 50 bar	G 3/4	24 V DC	1780 mm	980 mm	525 mm	180 k
DHW 156/50	825 m³/h	17 - 50 bar	G 3/4		1870 mm	1080 mm	575 mm	240 k
DHW 239/50	1.254 m³/h	17 - 50 bar	G 3/4		1870 mm	1190 mm	630 mm	390 k
DHW 5/100	72 m³/h	30 - 100 bar	G 1/2		1155 mm	635 mm	400 mm	100 k
DHW 9/100	87 m³/h	30 - 100 bar	G 1/2	230 V / 50-60 Hz 115 V / 50-60 Hz 24 V DC	1205 mm	635 mm	400 mm	110 k
DHW 12/100	153 m³/h	30 - 100 bar	G 1/2		1220 mm	685 mm	400 mm	115 k
DHW 24/100	283 m³/h	30 - 100 bar	G 3/4		1350 mm	740 mm	450 mm	144 k
DHW 37/100	429 m³/h	30 - 100 bar	G 3/4		1410 mm	810 mm	450 mm	200 k
DHW 58/100	750 m³/h	30 - 100 bar	G 3/4		1710 mm	870 mm	450 mm	275 k
	24							
DHW 5/250	115 m³/h	30 - 250 bar	G 1/2		1155 mm	635 mm	400 mm	110 k
DHW 9/250	140 m³/h	30 - 250 bar	G 1/2	230 V / 50-60 Hz	1205 mm	635 mm	400 mm	115 k
DHW 12/250	270 m³/h	30 - 250 bar	G 1/2		1220 mm	685 mm	400 mm	132 k
DHW 24/250	500 m³/h	30 - 250 bar	G 3/4	115 V / 50-60 Hz 24 V DC	1350 mm	740 mm	450 mm	195 k
DHW 37/250	800 m³/h	30 - 250 bar	G 3/4	24 V DC	1410 mm	810 mm	450 mm	245 k
DHW 58/250	1.400 m³/h	30 - 250 bar	G 3/4		1710 mm	870 mm	450 mm	375 k
DHW 5/350	150 m³/h	30 - 350 bar	G 1/2		1155 mm	635 mm	400 mm	110 k
DHW 9/350	180 m³/h	30 - 350 bar	G 1/2		1205 mm	635 mm	400 mm	115 k
DHW 12/350	300 m³/h	30 - 350 bar	G 1/2	230 V / 50-60 Hz 115 V / 50-60 Hz 24 V DC	1220 mm	685 mm	400 mm	145 k
DHW 24/350	525 m³/h	30 - 350 bar	G 3/4		1350 mm	740 mm	450 mm	225 k
DHW 37/350	850 m³/h	30 - 350 bar	G 3/4		1410 mm	810 mm	450 mm	280 k
DHW 58/350	1.560 m³/h	30 - 350 bar	G 3/4		1710 mm	870 mm	450 mm	415 k

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen max. zulässiger Betriebsüberdruck, Eintrittstemperatur 35°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Serie DM

Regenerationsart: ---

Drucktaupunkte: bis zu -40°C

Volumenstrom: 4,2 m³/h bis 24 m³/h Anschluss: G 1/8 bis G 3/8

Membrantrockner der Serie DM trocknen geringe Druckluftmengen auf Drucktaupunkte von bis zu -40°C. Sie erzeugen damit trockene, untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Der von Membrantrocknern erzielte Drucktaupunkt ist abhängig von der Eintrittstemperatur und der eingesetzten Spülluftmenge. Für eine energetisch sinnvolle Drucklufttrocknung sollten Drucktaupunktabsenkungen von maximal 30°C erfolgen. Bei einer Eintrittstemperatur von z.B. 20°C wird ein Drucktaupunkt von -10°C erzielt.

Membrantrockner der Serie DM bestehen aus bis zu 8,5 bar druckbeständigen Hohlfaser-Membranbündeln, durch deren feinste Poren ausschließ-

lich Wassermoleküle und somit Feuchtigkeit diffundieren kann. Vom Austritt des Membrantrockners entnommene, expandierte trockene Druckluft (Spülluft) wird auf die Außenseite der Hohlfasern geleitet und entzieht der in den Hohlfasern strömenden Druckluft die Feuchtigkeit.

Feste und ölige Verunreinigungen müssen von den empfindlichen Hohlfaser-Membranen ferngehalten werden. Sofern am Eintritt des Membrantrockners noch keine entsprechende Druckluftreinheit besteht ist unbedingt ein geeigneter Vorfilter einzusetzen.

Membrantrockner der Serie DM sind kompakte, vollintegrierte Drucklufttrockner. Die Serie DM-SWC verfügt zusätzlich über eine 3-stufige Einstellmöglichkeit der Spülluft zur Erzielung unterschiedlicher Drucktaupunkte.

Verfügbares Zubehör

Vorfilter

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Max. zul. Betriebsüberdruck	Druckluft Anschluss	Höhe	Breite	Tiefe	Gewicht
DM-SWCM-08-100	4,2 m³/h	8,5 bar	G 1/8	112 mm	61 mm	31 mm	0,26 kg
DM-SWCM-15-100	7,2 m³/h	8,5 bar	G 1/8	112 mm	61 mm	31 mm	0,27 kg
DM-SWC-01-150	12 m³/h	8,5 bar	G 1/4	165 mm	70 mm	40 mm	0,39 kg
DM-SWC-02-250	18 m³/h	8,5 bar	G 3/8	215 mm	100 mm	50 mm	0,69 kg
DM-SWC-03-250	24 m³/h	8,5 bar	G 3/8	215 mm	100 mm	50 mm	0,71 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 20°C, 30°C Taupunktabsenkung

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

Serie FCA..CMSM

Regenerationsart: Wechselkartuschen

Drucktaupunkte: bis zu -40°C

Volumenstrom: 0,5 m³/h bis 4 m³/h

Anschluss: G 1/2

Endstellentrockner der Serie FCA trocknen geringe, kurzzeitig benötigte Druckluftmengen auf Drucktaupunkte von bis zu -40°C. Sie erzeugen damit trockene, untersättigte Druckluft, in der, bei Temperaturen über dem Drucktaupunkt, keine Kondensationsprozesse und somit keine Bildung von flüssigem Wasser in der Druckluft mehr stattfinden kann.

Endstellentrockner der Serie FCA werden auch eingesetzt, wenn sensible Anwendungen mit hohen Ansprüchen an den Trocknungsgrad der Druckluft vor unerwarteten Feuchteeintrag geschützt werden müssen (Sicherheitsstufe bei adsorptionsgetrockneter Druckluft).

Endstellentrockner der Serie FCA bestehen aus einem bis 16 bar druckbeständigen Gehäuse und einer Trockenmittelkartusche mit integriertem Staubfilter. Beim Durchströmen der Trockenmittelkartusche wird der Druck-

luft durch das Trockenmittel die Feuchtigkeit hochgradig entzogen (Adsorption). Der integrierte Staubfilter hält dabei entstehenden Abrieb aus dem Trockenmittel zuverlässig zurück. Eine nachfolgende Staubfiltration ist nicht erforderlich.

Ölige Verunreinigungen würden das Trockenmittel verkleben und müssen daher vom Trockenmittel ferngehalten werden. Sofern am Eintritt des Endstellentrockners noch keine entsprechende Druckluftreinheit besteht ist unbedingt ein geeigneter Vorfilter einzusetzen.

Mit dem optionalen Feuchteindikator kann näherungsweise der Trocknungsgrad der Druckluft und somit ein ggf. erforderlicher Wechsel der Trockenmittelkartusche ermittelt werden.

Verfügbares Zubehör

Vorfilter Feuchteindikator

Technische Daten

Baugröße	Nominaler Volumenstrom*1	Sättigungs- kapazität* ¹	Max. zul. Betriebsüberdruck	Druckluft Anschluss	Höhe	Breite	Tiefe	Gewicht
FCA90CMSM	0,5 m³/h	11 m³	16 bar	G 1/2	312 mm	130 mm	122 mm	4,0 kg
FCA110CMSM	1,5 m³/h	32 m³	16 bar	G 1/2	412 mm	130 mm	122 mm	4,5 kg
FCA120CMSM	2,5 m³/h	54 m³	16 bar	G 1/2	512 mm	130 mm	122 mm	5,0 kg
FCA130CMSM	4,0 m³/h	95 m³	16 bar	G 1/2	712 mm	130 mm	122 mm	6,5 kg

^{*1 –} normiert auf 1 bar(a) und 20°C für Betriebsbedingungen 7 bar Betriebsüberdruck, Eintrittstemperatur 20°C, Drucktaupunkt am Austritt -40°C

Detaillierte technische Daten und Bezugsgrößen entnehmen sie bitte den jeweiligen Produktdatenblättern, die für Sie auf www.fstweb.de zum Download bereit stehen.

FST GmbH

Vertrieb: Im Teelbruch 106 – D-45219 Essen

Stammsitz: Weiherdamm 17 – D-57250 Netphen-Deuz

2 +49 (0)2054 / 8735-0

49 +49 (0)2054 / 8735-100

info@fstweb.de

www.fstweb.de

Fachhandelspartner

